

America

Epson America, Inc. Headquarter:

3840 Kilroy Airport Way Long Beach, California 90806-2452 USA Phone: +1-562-290-4677

San Jose Office: 214 Devcon Drive San Jose, CA 95112 USA Phone: +1-800-228-3964 or +1-408-922-0200

Europe

Epson Europe Electronics GmbH Riesstrasse 15, 80992 Munich, Germany Phone: +49-89-14005-0 FAX: +49-89-14005-110

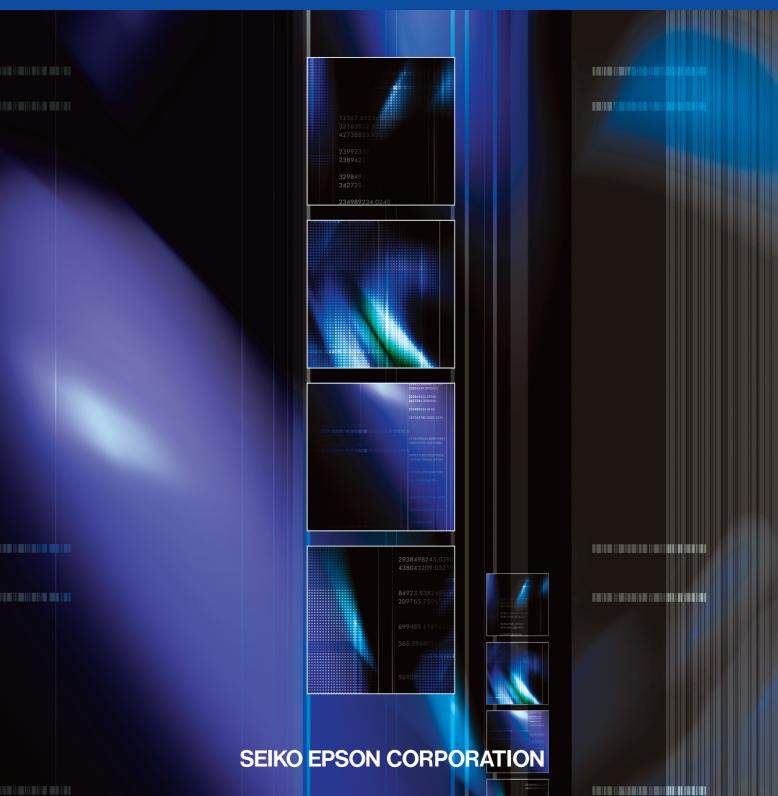
Asia

Epson (China) Co., Ltd. 4th, Floor, Tower 1 of China Central Place, 81 Jianguo Road, Chaoyang District, Beijing 100025 China Phone: +86-10-8522-1199 FAX: +86-10-8522-1120

Shanghai Branch Room 1701 & 1704, 17 Floor, Greenland Center II, 562 Dong An Road, Xu Hui District, Shanghai, China Phone: +86-21-5330-4888 FAX: +86-21-5423-4677

Shenzhen Branch Room 804-805, 8 Floor, Tower 2, Ali Center, No.3331 Keyuan South RD(Shenzhen bay), Nanshan District, Shenzhen 518054, China Phone: +86-10-3299-0588 FAX: +86-10-3299-0560

Epson Taiwan Technology & Trading Ltd. 15F., No.100, Songren Rd., Sinyi Dist., Taipei City 110. Taiwan Phone: +886-2-8786-6688


Epson Singapore Pte., Ltd. 1 HarbourFront Place, #03-02 HarbourFront Tower One, Singapore 098633 Phone: +65-6586-5500 FAX: +65-6271-3182

Seiko Epson Corp. Korea Office 19F, KLI 63 Bldg., 60 Yoido-dong, Youngdeungpo-Ku, Seoul 150-763, Korea Phone: +82-2-784-6027 FAX: +82-2-767-3677

Seiko Epson Corp. **Sales & Marketing Division**

Device Sales & Marketing Department

421-8, Hino, Hino-shi, Tokyo 191-8501, Japan Phone: +81-42-587-5816 FAX: +81-42-587-5116 ASICs Gate Arrays / Embedded Arrays / Standard Cells

Epson semiconductor website global.epson.com/products_and_drivers/semicon/

Document code : 701077824 First Issue April 2006 Revised March 2019 in JAPAN \oplus

2019

Business Concept

Expanding use of smartphones and tablets is giving broadband internet and wireless communications even greater roles in our daily lives, and making the arrival of the ubiquitous network society an inevitable reality. In particular, semiconductors for use in portable devices, information terminals, in-vehicle devices and FA devices are expected to provide higher performance in terms of thinner structure, lighter weight, and longer operation with limited power supply. We have been focusing on the creation of compact, lowpower semiconductors since we started the development of CMOS LSI for watches in 1969. Since then, we have steadily built up our expertise in energy-saving, space-saving, and time-saving designs. This has enabled us to quickly obtain the semiconductor development technology needed to meet the demands of the new era of ubiquitous networks. Our concept is to develop "saving technologies" to reduce power consumption, development times, and implementation space. Our goal is to be a true partner for you, providing you with strategic advantages, enhancing your customer value based on our "saving technologies" and mixed analog/ digital technologies that we have cultivated, as well as our design capabilities, manufacturing capabilities and stable supply that can satisfy your detailed requirements.

Environmental Responsibility

Epson semiconductor technology provides environmental value to customers by creating and manufacturing eco-friendly products.

1) We Epson's products are surely complying with the Eu-RoHS (2011/65/EU) Directive.

- 2) We are releasing information about the containing chemical substances of products at web-site. Product of QFP & BGA are described in the following URL.
- global.epson.com/products and drivers/semicon/information/package lineup.html *Some products are excluded.
- Environmental management system third party certification status

ISO14001

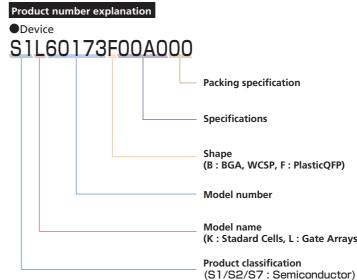
Type of certification : ISO 14001: 2015, JIS Q 14001: 2015 Awarded to : TOHOKU EPSON CORPORATION, SEIKO EPSON CORPORATION

(Fujimi Plant, Suwa Minami Plant) Certified by : Bureau Veritas Japan Co., Ltd.

Date of certification : April 3, 1999 Type of certification : ISO 14001: 2015

Awarded to : Singapore Epson Industrial Pte. Ltd. Certified by : SGS Date of certification : Jan 12, 1999

Epson's Quality Policy

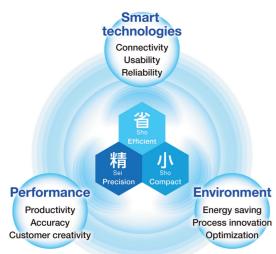

Keeping the customer in mind at all times, we make the guality of our products and services our highest priority. From the quality-assurance efforts of each employee to the quality of our company as a whole, we devote ourselves to creating products and services that please our customers and earn their trust. Epson has acquired ISO9001 and IATF16949 certification with its IC, module and their application products.

Quality Management system third party certification status ISO9001 Type of Certification : ISO9001: 2015 , JIS Q 9001: 2015 Awarded to : TOHOKU EPSON CORPORATION, SEIKO EPSON CORPORATION (Fujimi Plant, Suwa Minami Plant, Hino Office) Certified by : Bureau Veritas Japan Co., Ltd. Certificate No.: 3762381 Initial Date of Certification : October 10, 1993 Type of Certification : ISO9001: 2015 Awarded to : Singapore Epson Industrial Pte. Ltd. Certified by : SGS Certificate No. : SG03/00011 Initial Date of Certification : February 4, 2003 IATF16949 Type of Certification : IATF16949:2016 Awarded to : TOHOKU EPSON CORPORATION, SEIKO EPSON CORPORATION (Fujimi Plant, Suwa Minami Plant, Hino Office), EPSON EUROPE **ELECTRONICS** GmbH Certified by : Bureau Veritas Japan Co., Ltd. Certificate No. : 281371 Initial Date of Certification : Dec 9, 2017

Type of Certification : IATF16949:2016 Awarded to : Singapore Epson Industrial Pte. Ltd. Certified by : SGS Certificate No. : SG07/00021 Initial Date of Certification : May 2, 2018

0 Ν Т E Ν

History of Epson semiconductor	4-5
ASIC Product Lineup	6-7
Gate Arrays	8-9
Embedded Arrays	10
Standard Cells	11
Macro Cells	12-13
Epson Originals	14-16


(B : BGA, WCSP, F : PlasticQFP)

(K : Stadard Cells, L : Gate Arrays, X : Embedded Arrays)

Package Lineup	17-19
Gate Array Package List Package's Thermal Resistance Jser Interface Development Flow	
Gate Array Package List	20-22
Package's Thermal Resistance	23
User Interface	24
Development Flow	25
Epson ASIC Website	26

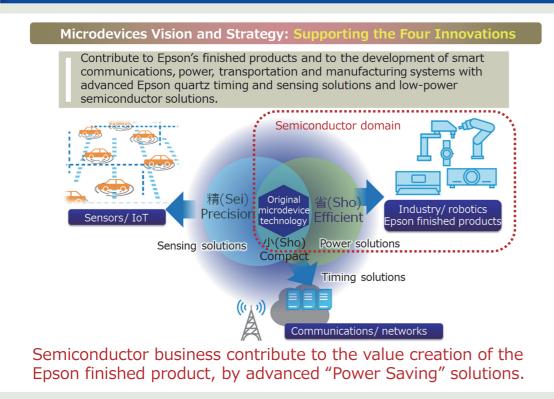
History of Epson semiconductor **ASICs**

Value Generated by Epson Technologies

Value generated by Epson's efficient, compact and precision technologies

Smart technologies

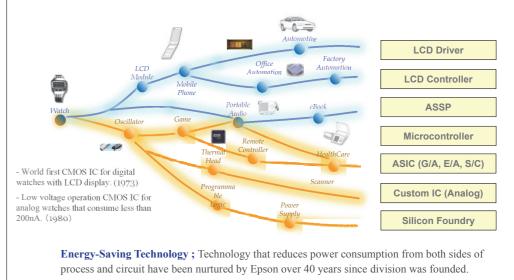
Create convenient and easy-to-use products that can be used anytime and anywhere, and which help customers reduce waste, and save effort, time and money.


Environment

Leverage Epson products to reduce environmental impact by improving customers' work processes, and contribute to a sustainable society.

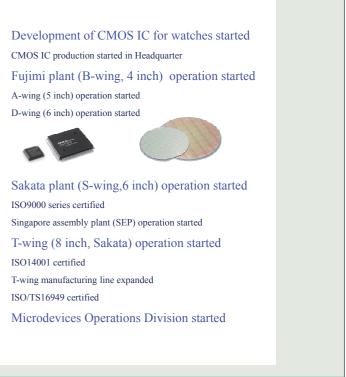
Performance

Use outstanding products to contribute to customers' performance through productivity, accuracy and creativity.

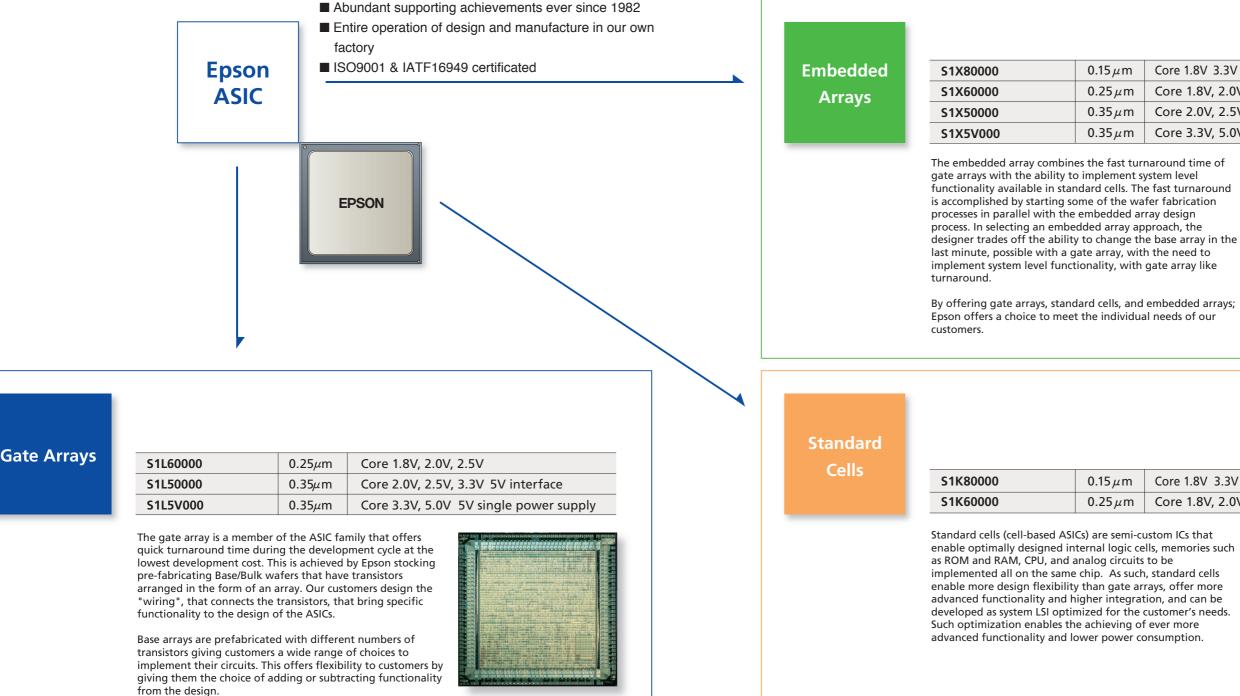

The role of Microdevices Div. and Semiconductor domain

History of Epson semiconductor

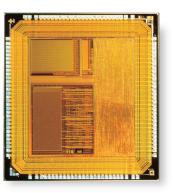
History of Epson Semiconductor's Technology


As the semiconductor division of "worldwide watch maker Seiko", semiconductor business has expanded into LCD Drivers, ASICs and MCUs from IC for Watches. These businesses are all based on Epson's energy-saving technology.

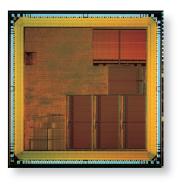
Epson Semiconductor's History



ASIC Product Lineup ASICs


ASIC Product Lineup

Epson's ASIC offerings aim to provide the best overall solution thus enabling our customers to get products to market successfully. Epson ASIC products include gate arrays that address the need for fast turnaround, at low IC development costs; Standard Cells, that make system solutions possible at the lowest unit price, and embedded arrays that combine the fast turnaround time of gate arrays with the ability to implement system level functionality on chips available with standard cells.



m	Core 1.8V 3.3V single power supply with LDO
ιm	Core 1.8V, 2.0V, 2.5V 5V interface
ιm	Core 2.0V, 2.5V, 3.3V 5V interface
ιm	Core 3.3V, 5.0V 5V single power supply

	Core 1.8V 3.3V single power supply with LDO
m	Core 1.8V, 2.0V, 2.5V 5V interface

Epson's Gate Array is a suitable solution for replacing existing devices because this Gate Array option gives flexibility to adapt the power supply and layouts of other various signals. Furthermore Epson has invested on the new Gate Array series called "S1L5V000" which supports 5V single power supply with 0.35µm process. Since it is a new series, it is also suitable for long life time applications.

S11 5000	O Sorioo													Core	I/O	
SIL5000	0 Series													2.0V	2.0V	
Se	ries	S1L50	000 Seri	es										2.00	3.3V	
	• Ultra l	• Ultra large scale integration (0.35 μ m CMOS, using 2-, 3- or 4-layer interconnect process)									2.5V	2.5V				
	• High-s	peed oper	ration (0.1	4 ns delay	/ at 3.3 V,	with 2-inp	out power	r NAND Ty	/p.)				2.50	3.3V		
Features		• Low p	ower cons	umption	(Internal c	ell: 0.7 <i>µ</i> V	V/MHz/gat	e at 3.3 V)					3.3V	3.3V	
		• Drivab					5.0 V, IOL				3 V,			5.50	5.0V	
			Iol	= 0.1, 0.5,	1, 3, 6 m	A at 2.5 V	, IOL = 0.05	6, 0.3, 0.6,	2, 4 mA a	t 2.0 V)						
	Double layer	S1L50062	S1L50122	S1L50282	S1L50552	S1L50752	S1L50992	S1L51252	S1L51772	S1L52502	S1L53352	S1L54422	S1L55062	S1L56682	S1L58152	!
Model	Triple layer	S1L50063	S1L50123	S1L50283	S1L50553	S1L50753	S1L50993	S1L51253	S1L51773	S1L52503	S1L53353	S1L54423	S1L55063	S1L56683	S1L58153	
	Quadruple layer	S1L50064	S1L50124	S1L50284	S1L50554	S1L50754	S1L50994	S1L51254	S1L51774	S1L52504	S1L53354	S1L54424	S1L55064	S1L56684	S1L58154	ł
Total BC (Row gates)	5.8k	12.0k	28.8k	55.5k	75.8k	99.2k	125.8k	177.1k	250.2k	335.9k	442.2k	506.7k	668.6k	815.5k	
	Double layer	2.9k	6.0k	14.4k	26.1k	35.7k	46.7k	56.6k	79.7k	112.6k	144.5k	176.9k	202.7k	267.5k	326.2k	
	Triple layer	5.1k	10.6k	25.3k	47.2k	64.4k	84.4k	100.7k	132.8k	187.7k	251.9k	309.5k	354.7k	468.0k	570.9k	
	Quadruple layer	5.5k	11.4k	27.3k	52.8k	72.0k	94.3k	119.5k	168.2k	237.7k	319.1k	397.9k	456.1k	601.7k	734.0k	
Total Load Count	80 <i>µ</i> m	-	56	88	124	144	168	188	224	264	308	352	376	432	480	
Total BC (Re I Total Lead Count Total Lead Count	70 <i>µ</i> m	48	64	104	144	168	192	216	-	-	-	-	-	-	-	
	Internal gates			tpd =	0.14 ns (3.3 V, F/C	0 2, typica	l wire loa	d), 0.21 n	s (2.0 V, F	/O 2, typi	ical wire l	oad)			
Delay Time	Input buffer	tpd = 0.3	8 ns (5.0)	V, F/O 2, ty	pical wire	e load) Le	vel shifter:	0.4 ns (3.	3 V, F/O 2	, typical w	vire load),	1.3 ns (2.	0 V, F/O 2,	typical wi	re load)	
	Output buffer				tpd = 2.1	2 ns (5.0	V) Level sl	hifter: 2.0	2 ns (3.3	V), 3.9 ns	(2.0 V) CI	L = 15 pF				
I/O	level						CMOS	, LVTTL, F	PCI-5V, PC	CI-3.3V						
Input	modes				L	VTTL, CN	10S, Pull-u		wn, Schn	nitt, Fail-s	afe, Gate	d				
Output	t modes				N	ormal, O	pen drain	, 3-state,	Bidirectio	nal, Fail-s	afe, Gate	ed				

Note: Figures shown for usable gates are approximations. The actual number of usable gates varies according to the implemented circuitry.

S1L5V000 Series

											4			
Se	ries	S1L5V000 se	eries						5.0V	5.0V	1			
Quadruple laye Total BC (Row gates) Usable gates Total Lead Count		High speed op Low power co	 Large scale integration (0.35 μm CMOS, using 2-, 3-, 4-layer interconnect process) High speed operation (internal gate delay: 0.19ns at 5V, 0.29ns at 3.3V, 2-input power NAND Typ.) Low power consumption (Internal cell: 5V 1.3 μW/MHz/BC, 3.3V 0.54uW/MHz/BC) Drive capacity (loL=0.1, 1, 3, 8, 12, 24mA at 5.0V, IoL=0.1, 1, 2, 6, 10mA at 3.3V) 											
Double laye		S1L5V012	S1L5V042	-	S1L5V112	-	S1L5V252	-		S1L5V482				
Model	Triple layer	S1L5V013	S1L5V043	S1X5V513*	S1L5V113	S1X5V523*	S1L5V253	S1X5V5	33*	S1L5V483				
	Quadruple layer	S1L5V014	S1L5V044	S1X5V514*	S1L5V114	S1X5V524*	S1L5V254	S1X5V5	34*	S1L5V484				
Total BC (Row gates)	8.8k	42.0k	26.0k	109.2k	90.3k	254.3k	235.0	k	479.9k				
	Double layer	2.6k	12.6k	-	32.7k	-	63.5k	-		119.9k				
	Triple layer	5.3k	25.2k	14.3k	65.5k	49.7k	139.8k	129.3	k	239.9k				
gutes	Quadruple layer	6.1k	29.4k	16.9k	76.4k	58.7k	165.3k	152.8	k	287.9k				
Total Le	ad Count	48	1	04	10	68	25	56		308				
	Internal Gates	tpd=0.	19ns (5.0V opera	tion, F/O=2, typi	cal wiring load),	tpd=0.29ns (3.3V	operation, F/O=2	, typical w	viring load	ł)				
Delay Time	Input Buffer	tpd=	0.45ns (5.0V ope	ration, F/O=2, typ	ical wiring load),	tpd=0.55ns (3.3V c	operation, F/O=2,	typical wir	ing load)					
Output Buffer			tpd=2	.07ns (5.0V oper	ation, CL=15pF),	tpd=2.95ns(3.3V	operation, CL=15	pF)						
I/O	level				CMOS, TT	L, LVTTL								
Input	modes			TTL, LVTTL, CM	OS, Pull-up/Pull-o	down, Schmitt, Fa	ail-safe, Gated							
Outpu	t modes	Normal, Open-drain, 3-state, Bidirectional, Fail safe, Gated												

Note: Figures shown for usable gates are approximations. The actual number of usable gates varies according to the implemented circuitry. *: Analog PLL built in master

Core I/O

											Core	I/O
S1L6000	IL60000 Series									1.8V	1.8V	
Ser	ries	S1L60000	S1L60000 Series									3.3V
		a Liltura Jawa			CMOC	2. 4 Januari int					2.0V	2.0V
			e scale integra ed operation (. ,								3.3V
Feat	ures		er consumptio					21.)		2.5V	2.5V
		 Drivability 	y (IoL = 0.1, 1,				•					3.3V
			IOL = 0.05	, 0.3, 1, 2, 3, 6	mA at 2.0 V,	IOL = 0.045, 0.	27, 0.9, 1.8, 2.	7, 5.4 mA at 1	.8 V)			
Model	Triple layer	S1L60093	S1L60173	S1L60283	S1L60403	S1L60593	S1L60833	S1L61233	S1L61583	S1I	_61903	S1L62513
wodei	Quadruple layer	S1L60094	S1L60174	S1L60284	S1L60404	S1L60594	S1L60834	S1L61234	S1L61584	S1I	_61904	S1L62514
Total BC (R	Row gates)	99.2k	171.8k	284.4k	400.3k	595.4k	831.6k	1,234.9k	1,587.8k	1,9	903.0k	2,519.6k
Usable	Triple layer	59.6k	103.1k	142.2k	200.2k	297.7k	332.7k	494.0k	635.1k	635.1k 7		1,007.9k
gates	Quadruple layer	69.5k	120.2k	184.9k	260.2k	387.0k	415.8k	617.5k	793.9k	951.5k		1,259.8k
Total Lead Count	80 <i>µ</i> m	—	_	_	-	_	284	344	388		424	488
Total Lead Count	70 μ m	112	148	188	224	272	-	-	-		-	_
	Internal gates				t _{pd} = 107 ps (2.5 V, F/O 1, †	typical wire lo	oad)				
Delay Time	Input buffer				tpd = 270 ps (2	2.5 V, F/O 2, t	ypical wire lo	oad)				
Output buffer					t _{pd} = 16	00 ps (2.5 V,	CL = 15 pF)					
I/O le	evels				CM	OS, LVTTL, P	CI-3.3V					
Input r	modes	CMOS, LVTTL, Pull-up/Pull-down, Schmitt, Level shifter, Fail-safe, Gated										
Output	modes	Normal, Open drain, 3-state, Bidirectional, Level shifter, Fail-safe, Gated										

Note: Figures shown for usable gates are approximations. The actual number of usable gates varies according to the implemented circuitry.

9

Gate Arrays

Embedded Arrays ASICs

Standard Cells

Creating hard macros for cells that are highly integrated and have advanced functionality enables development of system-on-a-chip designs, and utilization of the sea-of-gates structure in the logic means that the development period subsequent to the interconnection process is roughly equivalent to that for gate array chips.

In addition, the base array for LSI can be reused allowing only the logic block to be modified in development lead time equivalent to that for gate array chips.

Embedded array technology also facilitates circuit design changes and thereby helps avoid the risks associated with product modifications.

S1X5V000 Series

		Core	1/0
Series	S1X5V000 Series	3.3V	3.3V
	• High-density integration (0.35 μ m CMOS process technology and 2/3/4-layer interconnect process)	5.0V	5.0V
Features	 High-speed operation (Internal gate delay: 0.19ns ps/5.0 V, 0.29ns/3.3 V, 2-input power NAND Typ.) Low power consumption (Internal cell: 1.3 µ W/MHz/gate, 5.0V, 0.54 µW/MHz/gate, 3.3V, 2-input NAND T Drivability (IoL=0.1, 1, 3, 8, 12 mA at 5.0 V, 0.1, 1, 2, 6, 10 mA at 3.3 V 	yp.)	

S1X50000 Series

		Core	1/0
Series	S1X50000 Series	2.0V	2.0V
	• High-density integration (0.35 μ m CMOS process technology and 3/4-layer interconnect process)	2.00	3.3V
_	High-speed operation (Internal gate delay: 150 ps/3.3 V, 2-input power NAND Typ.)	2.5V	2.5V
Features	• Low power consumption (Internal cell: 0.37μ W/MHz/gate, 3.3V, Typ.)	2.50	3.3V
	• Drivability (IoL=0.1, 1, 3, 8, 12, 24 mA at 5.0 V, IoL=0.1, 1, 2, 6, 12 mA at 3.3 V, IoL=0.1, 0.5, 1, 3, 6 mA at 2.5 V, IoL=0.05, 0.3, 0.6, 2, 4 mA at 2.0 V)	3.3V	3.3V
		5.5V	

 Core	1/0	-
2.0V	2.0V	
2.00	3.3V	
2.5V	2.5V	
2.5V	3.3V	
3.3V	3.3V	
5.5V	5.0V	-

S1X60000 Series

		l Core	1/0
Series	S1X60000 Series		2.0V
	 High-density integration (0.25 µm CMOS process technology and 3/4/5-layer interconnect process, number of raw gates: 2,500,000 Max.) 	2.0V	3.3V
Features	 High-speed operation (Internal gate delay: 107 ps/2.5 V, 2-input power NAND Typ.) Low power consumption (Internal cell: 0.18 ⊬W/MHz/gate, 2.5V, Typ.) Drivability (IoL = 0.1, 1, 3, 6, 12, 24 mA at 3.3 V, IoL = 0.1, 1, 3, 6, 12, 24 mA at 2.5 V, 	2.5V	2.5V 3.3V
	loL = 0.05, 0.3, 1, 2, 4, 8 mA at 2.0 V)		

S1X80000 Series

		Core	I/O
Series	 S1X80000 Series Based on 0.15 µm CMOS process technology using 4/5-layer interconnect process Internal gate delay: 47.1ps/1.8V, 2-input NAND Typ. Lower power consumption (Internal cell: 0.063 µW /MHz/gate 2-input NAND Typ.) Drive performance (lot=2,4,8,12mA at 3.3V) 	1.8V	3.3V
	Based on 0.15 //m CMOS process technology using 1/5-layer interconnect process	LDO	3.3V
Features	 Internal gate delay: 47.1ps/1.8V, 2-input NAND Typ. Lower power consumption (Internal cell: 0.063 µW /MHz/gate 2-input NAND Typ.) 		

Standard cells (cell-based ASICs) are semi-custom ICs that enable optimally designed internal logic cells, memories such as ROM and RAM, CPU peripherals, and analog circuits to be implemented all on the same chip. As such, standard cells enable more design flexibility than do gate arrays, offer more advanced functionality and higher integration, and can be developed as a system-on-a-chip optimized for the customer's needs. Such optimization leads to ever more compact, power-conserving devices.

		Core	I/O	
S1K60000 Series		2.0V	2.0V	
Series	S1K60000 Series	2.0 V	3.3V	
Series		2.5V	2.5V	
	 Ultra large scale integration (0.25 μm CMOS, using 3-, 4- or 5-layer interconnect process, number of raw gates: 3,900,000 Max.) 	2.5V	3.3V	
Features • High-speed operation (Internal gate delay: 106ps/2.5V, 2-input NAND Typ.) • Low power consumption (Internal cell: 0.09 μW/MHz/gate, 2.5V, Typ.)				
	 Drivability (IoL = 0.1, 1, 3, 6, 12, 24 mA at 3.3 V, IoL = 0.1, 1, 3, 6, 9, 18 mA at 2.5 V, IoL = 0.05, 0.3, 1, 2, 3, 6 mA at 2.0 V) 			

		Core	I/O
S1K80000 Series		1.8V	3.3V
Series	S1K80000 Series	LDO	3.3V
Features	 Based on 0.15 µm CMOS process technology using 4/5-layer interconnect process Internal gate delay: 43.9ps/1.8V, 2-input NAND Typ. Lower power consumption (Internal cell: 0.039 µW /MHz/gate 2-input NAND Typ.) Drive performance (IoL=2,4,8,12mA at 3.3V) 		

ASICs

Macro Cells

1. Flash

Series	S1X50000		S1X60000/S1K60000*
Operating Voltage	2.7 to	3.6V	2.3 to 2.7V
Memory Size	64K,128K,256K,512K,1M,2M-bit	256K,512K,1M,2M,4M-bit	256K,512K,1M,2M,4M-bit
I/O	8,16	-bit	16-bit
Sector Size	1Kbyte/sector	4Kbyte/sector	4Kbyte/sector
Read Access Time (Max.)	50ns		50ns
Operating Current (Max.)	20mA		20mA
Standby Current (Max.)	10µ	A	10µA
Endurance Time (Max.)	1000 c	ycles	1000 cycles
Data Retention (Min.)	10years		10years
Temperature Range	0 to 70 °C		0 to 70 °C
Layer	3		3

* This macro cell uses the SuperFlash® technologies under license from SST UK Ltd.

2. PLL

Series	S1X5V000	S1X5	0000
Macro Type	Macro Type A35M		A35M
Operation Voltage	5.0V	3.0 to	3.6V
Input Frequency	5MHz to 40MHz	32kHz	5MHz to 40MHz
Multiplication Ratio	x2 to x26	x610 to x4096	x2 to x26
Output Frequency	20MHz to 135MHz	20MHz to 135MHz	
Period Jitter	±2%	±3%	±2%
Duty	50%±10%	50%±	:10%
Lock Up Time	100µs	100msec	100µs
Low Pass Filter On chip		On chip	
Temperature Range	-40 to 110°C	-40 to 85℃	
Layer	3	3	

Series	S1X60000/S1K60000		S1X80000/S1K80000
Масто Туре	A25K	A25M	A15M
Operation Voltage	2.3 to	2.7V	1.65 to 1.95V
Input Frequency	32kHz	5MHz to 150MHz	5MHz to 150MHz
Multiplication Ratio	Max. 16000	x1 to x16	x1 to x16
Output Frequency	20MHz to 200MHz		20MHz to 200MHz
Period Jitter	Jitter ±2% ±200ps	+20005	POUT<=100MHz ±2%
		<u>-200</u> ps	POUT>100MHz ±200ps
Duty	50%	±5%	50%±5%
Lock Up Time	100msec	100µs	200µs
Low Pass Filter	On chip		On chip
Temperature Range	-40 to 85°C		-40 to 85℃
Layer	:	3	3

3. SRAM

Series	S1X5V000	
Масго Туре	Standard	
Port	1-port 2-port (1R+	
Memory Size/Module	128 to 16K-bit	
Data Bus Width (bit)	x1 to x32 1-bit step	
Operating Voltage	3.3V, 5.0V	
Operation Frequency (Max.)	50MHz/5.0V	
Layer	3	

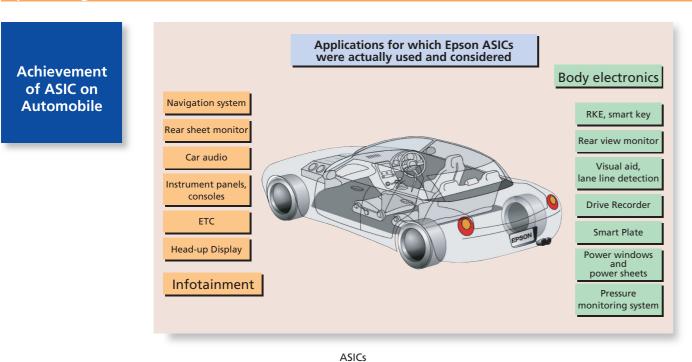
Series	S1X50000					
Масго Туре	Standard High-Density H		High Speed			
Port	1-port	Dual port (2R+2W)	1-port	1-port	2-port (1R+1W)	Dual port (2R+2W)
Memory Size/Module	128 to 64K-bit	1K to 64K-bit	32K to 512K-bit		32K to 72K-bit	
Data Bus Width (bit)	x1 to x32 1-bit step	x8, x16, x24, x32	x8, x16, x32	x1 to x144 1-bit step		
Operating Voltage	2.0V, 2.5V,	3.0V, 3.3V	2.0V, 3.0V, 3.3V	3.3V		
Operation Frequency (Max.)	71N	1Hz	76MHz	125MHz 110MHz		MHz
Layer	3	3	3	3		

Series	S1X60000/S1K60000				
Macro Type	Star	ndard	High-Density	High	Speed
Port	1-port	Dual port (2R+2W)	1-port	1-port	2-port (1R+1W)
Memory Size/Module	128 to 64K-bit 1K to 64K-bit		32K to 512K-bit	128 to	64K-bit
Data Bus Width (bit)	x1 to x32 1-bit step	x8, x16, x24, x32	x8, x16, x32	x4 to x64	1-bit step
Operating Voltage		2.0V, 2.5V		2.	5V
Operation Frequency (Max.)	125MHz	125MHz 119MHz		179	MHz
Layer	3		3		3

Series		S1X80000/S1K80000			
Масто Туре		Standard			
Port	1-port	2-port (1R+1W)	Dual port (2R+2W)	1-port	
Memory Size/Module	128 to 64K-bit	64 to 16K-bit	1K to 32K-bit	128K to 1M-bit	
Data Bus Width (bit)	x1 to x32 1-bit step	x1 to x32 1-bit step	x8, x16, x24, x32	x8, x16, x32	
Operating Voltage		1.8V			
Operation Frequency (Max.)	125MHz	119MHz	116MHz	74MHz	
Layer	3	4	3	3	

Ask our sales department regarding Gate Array SRAM.

Macro Cells


Epson Originals -1- TCON LCD Controller ASICs

- TCON is a display control LSI with a built-in LVDS receiver, suitable for a TFT display module.
- Simply by adding or integrating various dedicated IPs such as LVDS receiver, RSDS transmitter and mini-LVDS transmitter to/with existing display timing control circuits, customers can easily develop TFT display systems in a short period of time, reduce developers' workload, and achieve a faster time to market.
- TCON IPs can be employed on a 0.35-, 0.25- or 0.15µm embedded array/standard cell, providing a developing environment equivalent to ASICs.

		0.35µm Series	0.25µm Series	0.18µm Series
	Host interface			
TCON IP	6-/8-bit LVDS receiver	А	Α	A
	8-/10-bit LVDS receiver	—	_	Α
Lineup	Panel interface			
	RSDS transmitter	А	Α	A
	mini-LVDS transmitter	—	Α	A
	LVDS transmitter	—	А	Α
	Image processing IP			
	Overdrive	—	Α	A
	γ correction	—	Α	A
	Contrast correction	—	Α	А
	Color matrix	_	Α	Α
	AME(Auto Movie Enhancement)	—	А	Α
	Others			
	Spread Spectrum IP	A	Α	А
	Power detection circuit	А	Α	Α
	Self oscillation circuit	_	А	А

A:Available

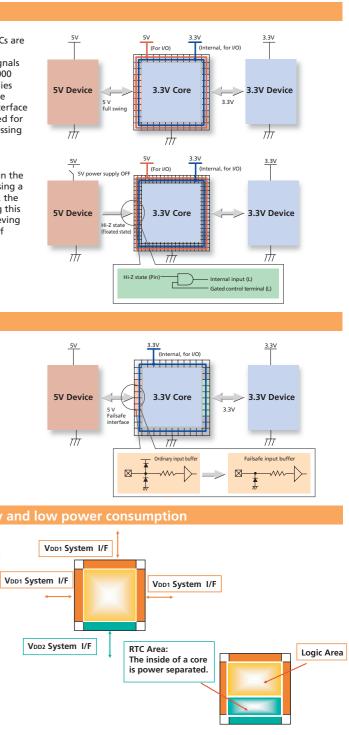
Epson Originals -2- Usable on Automobile

Epson Originals -3- Power System Interface

Development of low-voltage system power supplies continues as part of the trend toward reducing power consumption. However, in cases where not all system components can run on a single low-voltage power supply, multiple power supplies are used for the same system. Consequently, many of today's portable electronic devices include dual (5 V/3.3 V) power supplies, each with its own signals.

5 V/3.3 V Dual Power Supply System

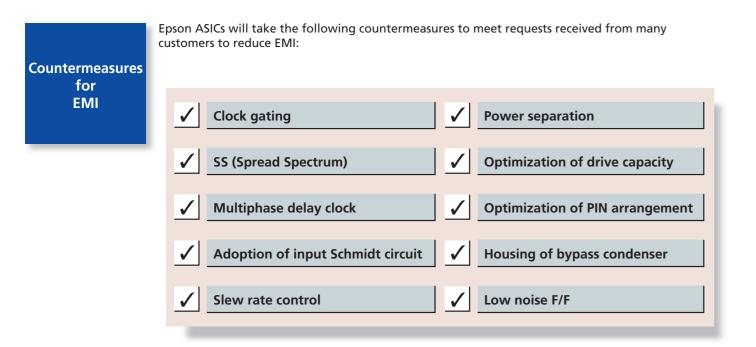
Level Shifter	Since it is often the case with ASICs that several ICs a connected in the same system, such systems are typically required to handle two types of level signal for 5 V and 3.3 V power. In S1L50000 and S1X50000 series products, the inclusion of two power supplies (such as 5 V and 3.3 V power supplies) enables the implementation of a bilevel (5 V, 3.3 V) signal interfactor each I/O buffer. Such an interface is best suited for applications that include high-speed signal processin and high drive current capacity.
Gated I/O buffer	The use of the gated input buffer enables input in th Hi-Z state, which has not usually been possible using buffer. In a system using dual-line power supply, the high-voltage power supply may be cut off. Using thi function allows hot-plugging a PC card and achieving lower power consumption in the backup mode of PDA.
3.3 V Single Power	Supply System
Failsafe I/O Buffer	Even when system constraints preclude the implementation of a dual power supply system, it is still possible to provide an interface between a 3.3 V single power supply chip and a 5 V chip by implementing an input buffer that does not include a forward diode (in the V _{DD} direction), which also provides failsafe support for output.
Power separation s	uitable for low voltage power supply a
IO Power Separation	 Interface with the devices of other power systems can be possible by power separation of I/O cell area.
	• When mounted with RTC, power separation between RTC area and Logic area can be possible.

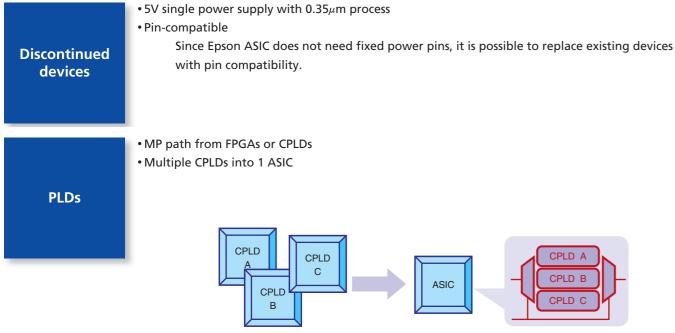

Core Power

Separation

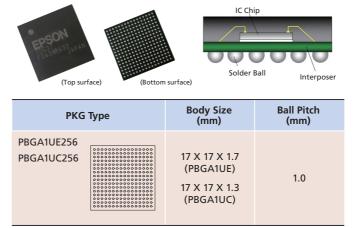
possible Power OFF can be possible in the non RTC area.

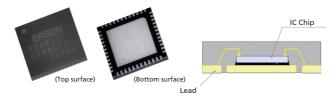
Epson Originals

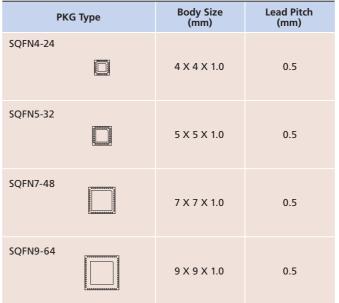



ASICs Epson Originals

Package Lineup

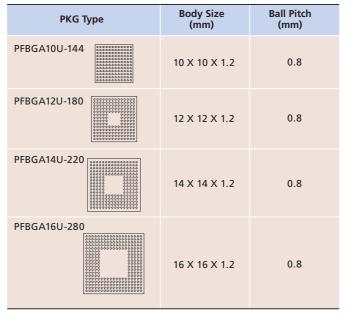

Epson Originals -4- Countermeasures for EMI


Epson Originals -5- Replacement of existing devices For long life time applications.



Plastic Ball Grid Array (PBGA)

Quad Flat Non-leaded Package (QFN)



	WCSP			
4	5012 H0402 (Top surface)	(Bottom surface	Sdder Ball Over Coat Re	sin Redistribution Circuit
	РКС Туре	Pin	Body Size (mm)	Ball Pitch (mm)
	WCSP(S1L5012)	16	2.4 X 2.4 X 0.8	0.5
	WCSP(S1L5028)	25	3.0 X 3.0 X 0.8	0.5
	WCSP(S1L5075)	49	4.2 X 4.2 X 0.8	0.5
	WCSP(S1L5125)	81	5.0 X 5.0 X 0.8	0.5
	WCSP(S1L60093)	49	3.0 X 3.0 X 0.8	0.4

ASICs Package Externals

Plastic Fine-pitch Ball Grid Array (PFBGA) IC Chip Interposer (Top surface) Solder Ball **Ball Pitch** Body Size РКG Туре (mm) (mm) PFBGA5U-60 5 X 5 X 1.2 0.5 PFBGA5U-81 5 X 5 X 1.2 0.5 PFBGA6U-96 6 X 6 X 1.2 0.5 PFBGA6U-121 6 X 6 X 1.2 0.5 PFBGA7U-144 7 X 7 X 1.2 0.5 PFBGA7U-161 7 X 7 X 1.2 0.5 PFBGA8U-161 8 X 8 X 1.2 0.5 PFBGA8U-181 8 X 8 X 1.2 0.5 PFBGA7U-100 7 X 7 X 1.2 0.65 PFBGA8U-112 8 X 8 X 1.2 0.65 PFBGA8U-121 8 X 8 X 1.2 0.65 PFBGA10U-160 10 X 10 X 1.2 0.65 PFBGA10U-180 10 X 10 X 1.2 0.65 PFBGA12U-208 12 X 12 X 1.2 0.65 PFBGA7U-48 7 X 7 X 1.2 0.8 PFBGA8U-81 8 X 8 X 1.2 0.8 PFBGA10U-121 10 X 10 X 1.2 0.8

Very Thin Fine-pitch Ball Grid Array (VFBGA)

10 X 10 X 1.0

10 X 10 X 1.0

10 X 10 X 1.0

0.5

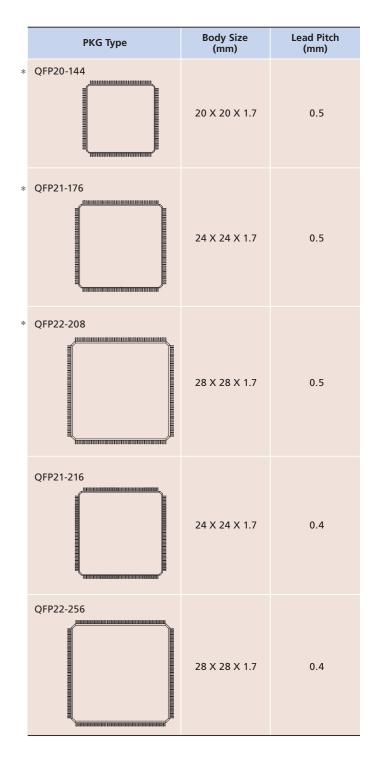
0.8

0.8

Packag

PI	КБ Туре	Body Size (mm)	Lead Pitch (mm)
TQFP12-48		7 X 7 X 1.2	0.5
QFP12-48		7 X 7 X 1.7	0.5
TQFP13-64		10 X 10 X 1.2	0.5
QFP13-64		10 X 10 X 1.7	0.5
TQFP14-80		12 X 12 X 1.2	0.5
QFP14-80		12 X 12 X 1.7	0.5
TQFP14-100		12 X 12 X 1.2	0.4
TQFP15-100		14 X 14 X 1.2	0.5
QFP15-100		14 X 14 X 1.7	0.5
TQFP15-128		14 X 14 X 1.2	0.4
QFP15-128		14 X 14 X 1.7	0.4

* Can be on automobile


VFBGA10H-240

VFBGA10H-121

VFBGA10H-144

Package Externals

Gate Array Package List

Epson's Gate Array Series offers various packages for each base array. Please select the most suitable package, based on the circuit specifications and number of input/output terminals.

Gate Array Package List is subject to change due to the preparation condition of the lead frame and the improvement of production efficiency. Please consult Epson sales office when you are choosing packages.

S1L5V000 Series

	A	_2-Series	S1L5V012	S1L5V042	-	S1L5V112	-	S1L5V252	-	S1L5V482
	A	_3-Series	S1L5V013	S1L5V043	S1X5V513*	S1L5V113	S1X5V523*	S1L5V253	S1X5V533*	S1L5V483
	A	_4-Series	S1L5V014	S1L5V044	S1X5V514*	S1L5V114	S1X5V524*	S1L5V254	S1X5V534*	S1L5V484
	R	aw Gates	8.9k	42.0k	26.0k	109.3k	90.3k	254.4k	235.0k	479.9k
A	L2-Usa	ble Gates	2.7k	12.6k	-	32.8k	-	63.6k	-	119.9k
A	L3-Usa	ble Gates	5.4k	25.2k	14.3k	65.6k	49.7k	139.9k	129.3k	239.9k
A	L4-Usa	ble Gates	6.2k	29.4k	16.9k	76.5k	58.7k	165.4k	152.8k	287.9k
		Pads	48	10)4	16	68	25	56	308
PKG	Pin	PKG Type								
TQFP	48	TQFP12-48	А	1	A	1	Ą			
QFP	48	QFP12-48	А	1	A	А				
TQFP	64	TQFP13-64		1	A	А		А		Ν
QFP	64	QFP13-64		1	A	А		А		Ν
TQFP	80	TQFP14-80		1	А		А			
QFP	80	QFP14-80		1	А		А		A	
TQFP	100	TQFP14-100		1	A	А		A		Ν
TQFP	100	TQFP15-100		1	A	А		А		LQ
QFP	100	QFP15-100		1	A	А		А		LQ
TQFP	128	TQFP15-128		A (1	04)	А		1	A	LQ
QFP	128	QFP15-128		A (1	04)	1	4	1	A	LQ
QFP	144	QFP20-144				1	4	1	A	А
QFP	176	QFP21-176	Ν	1	N	A (1	68)	1	A	LQ
QFP	208	QFP22-208	Ν	1	N	1	N	1	Α	А
QFP	216	QFP21-216	Ν	1	Ν		N	1	A	LQ
QFP	256	QFP22-256	Ν	1	Ν		N	L	Q	LQ
QFN	24	SQFN4-24	А	1	Ν		Ν		N	
QFN	32	SQFN5-32	А	А		Ν		Ν		
QFN	48	SQFN7-48	Ν	А		А		Ν		
QFN	64	SQFN9-64	Ν	1	4	А		А		

A: Available for mass production

LQ: Quality assurance required (Lead frame required to be developed)

N: Not available A(): Usable up to the numbers of pins in the parenthesis

*: Analog PLL built in master

S1L50000 Series

	Al	_2-Series	S1L50062	S1L5	0122	S1L5	0282	S1L5	0552	S1L5	0752	SIL	50992	S1L	51252	S1L51772	S1L52502	S1L53352	S1L54422	S1L55062	S1L56682	S1L58152
	Al	_3-Series	S1L50063	S1L5	0123	S1L5	0283	S1L5	0553	S1L5	0753	SIL	50993	S1L	51253	S1L51773	S1L52503	S1L53353	S1L54423	S1L55063	S1L56683	S1L58153
	Al	4-Series	S1L50064	S1L5	0124	S1L5	0284	S1L5	0554	S1L5	0754	SIL	50994	S1L	.51254	S1L51774	S1L52504	S1L53354	S1L54424	S1L55064	S1L56684	S1L58154
	R	aw Gates	5.8k	12	.0k	28	.8k	55	.5k	75	.8k	99	9.2k	12	25.8k	177.1k	250.2k	335.9k	442.2k	506.7k	668.6k	815.5k
AL	L2-Usal	ble Gates	2.9k	6.	Ok	14	.4k	26	6.1k	35	.7k	46	6.7k	5	6.6k	79.7k	112.6k	144.5k	176.9k	202.7k	267.5k	326.2k
AL	_3-Usal	ble Gates	5.1k	10	.6k	25	i.3k	47	'.2k	64	.4k	84	1.4k	10	00.7k	132.8k	187.7k	251.9k	309.5k	354.7k	468.0k	570.9k
AL	_4-Usal	ble Gates	5.5k	11	.4k	27	'.3k	52	.8k	72	.0k	94	1.3k	11	19.5k	168.2k	237.7k	319.1k	397.9k	456.1k	601.7k	734.0k
		Pads	48	64	56	104	88	144	124	168	144	192	168	216	6 188	224	264	308	352	376	432	480
	F	Pad Pitch	70μ	70µ	80µ	70μ	80 <i>µ</i>	70 <i>µ</i>	80 <i>µ</i>	70µ	80µ	70µ	ι 80 μ	70,	μ80μ	80 <i>µ</i>						
PKG	Pin	PKG Type																				
TQFP	48	TQFP12-48	А	А	А		А	А	А		А		Ν									
QFP	48	QFP12-48	А	А	А		А	А	А		А		А		Ν							
TQFP	64	TQFP13-64		А	А		А	А	А		А		А		А	А	LQ	Ν	Ν			
QFP	64	QFP13-64		А	A(56)		А	А	А		А		А		А	А	А	Ν	Ν			
TQFP	80	TQFP14-80	А	А	А	А	А	А	А		А		А		А	А	А	А				
QFP	80	QFP14-80	А	А	А	А	А	А	А		А		А		А	А	А	А	Ν			
TQFP	100	TQFP14-100		А	А	А	А	А	А		А		А		А	А	Ν	Ν				
TQFP	100	TQFP15-100				А	A(88)	А	А		А		А		А	LQ	А	LQ	LQ	Ν	Ν	
QFP	100	QFP15-100				А	A(88)	А	А		А		А		А	А	А	LQ	LQ	Ν	Ν	
TQFP	128	TQFP15-128				A(104)		А			А		А		А	А	А	LQ	LQ	Ν	Ν	
QFP	128	QFP15-128				A(104)		А			А		А		А	А	A	LQ	LQ	Ν	Ν	
QFP	144	QFP20-144					LQ	А			А		А		А	А	A	А	LQ	LQ	LQ	Ν
QFP	176	QFP21-176	N	Ν	Ν	Ν	Ν	Ν		A(168)		A	A(168)		А	А	A	LQ	LQ			
QFP	208	QFP22-208	N	Ν	Ν	Ν	Ν	Ν		Ν		Ν	Ν	Ν	Ν	А	A	A	A	Ν	Ν	N
QFP	216	QFP21-216	Ν	Ν	Ν	Ν	Ν	Ν		Ν	Ν	Ν	Ν	A	A	А	LQ	LQ	LQ	Ν	Ν	N
QFP	256	QFP22-256	Ν	Ν	Ν	Ν	Ν	Ν		Ν	Ν	Ν	Ν	Ν	Ν	Ν	LQ	LQ	LQ	A	А	Ν
QFN	24	SQFN4-24	A	А	А	Ν	Ν															
QFN	32	SQFN5-32	А	А	А		А		Ν													
QFN	48	SQFN7-48	А	А	А		А		А		A		А		А							
QFN	64	SQFN9-64		А	A(56)		А		А		А		Α		Α	А	A					

A: Available for mass production

LQ: Quality assurance required (Lead frame required to be developed) N: Not available A(): Usable up to the numbers of pins in the parenthesis

21

Gate Array Package List

S1L60000 Series

		AL3-Series	S1L60093	S1L60173	S1L60283	S1L60403	S1L60593	S1L60833	S1L61233	S1L61583	S1L61903	S1L62513
		AL4-Series	S1L60094	S1L60174	S1L60284	S1L60404	S1L60594	S1L60834	S1L61234	S1L61584	S1L61904	S1L62514
		Raw Gates	99.2k	171.8k	284.4k	400.3k	595.4k	831.6k	1,234.9k	1,587.8k	1,903.0k	2,519.6k
	AL3-L	Isable Gates	59.6k	103.1k	142.2k	200.2k	297.7k	332.7k	494.0k	635.1k	761.2k	1,007.9k
	AL4-L	Isable Gates	69.5k	120.2k	184.9k	260.2k	387.0k	415.8k	617.5k	793.9k	951.5k	1,259.8k
		70 μ m Pads	112	148	188	224	272	-	-	-	-	-
		80 μ m Pads	-	-	-	-	-	284	344	388	424	488
PKG	Pin	PKG Type										
TQFP	48	TQFP12-48	А	А	А	Ν						
QFP	48	QFP12-48	А	А	А	Ν						
TQFP	64	TQFP13-64	А	А	А	А	А	LQ				
QFP	64	QFP13-64	А	А	А	А	А	А				
TQFP	80	TQFP14-80	А	А	А	А	А	А	А			
QFP	80	QFP14-80	А	А	А	А	А	А	А			
TQFP	100	TQFP14-100	А	А	А	А	А	Ν				
TQFP	100	TQFP15-100	А	А	А	А	А	LQ	LQ			
QFP	100	QFP15-100	А	А	А	А	А	LQ	LQ			
TQFP	128	TQFP15-128	А	А	А	А	А	LQ	LQ	Ν		
QFP	128	QFP15-128	А	А	А	А	А	LQ	LQ	Ν		
QFP	144	QFP20-144	Ν	А	А	А	А	А	LQ	LQ	Ν	
QFP	176	QFP21-176	Ν	Ν	А	А	А	А	LQ	Ν	Ν	
QFP	208	QFP22-208	Ν	Ν	LQ	LQ	А	А	А	Ν		
QFP	216	QFP21-216	Ν	Ν	Ν	А	А	LQ	LQ	Ν	Ν	Ν
QFP	256	QFP22-256	Ν	Ν	Ν	Ν	LQ	LQ	LQ	LQ	LQ	Ν
QFN	24	SQFN4-24	Ν	Ν	Ν							
QFN	32	SQFN5-32	А	Ν	Ν							
QFN	48	SQFN7-48	А	А	А	А						
QFN	64	SQFN9-64	А	А	А	А	А	А	Ν			

A: Available for mass production

LQ: Quality assurance required (Lead frame required to be developed) N: Not available A(): Usable up to the numbers of pins in the parenthesis

Package's Thermal Resistance

Among LSIs, chip temperatures (T_i) rise as power consumption increases. The chip temperature of a packaged IC can be calculated based on the ambient temperature T_a , the package's thermal resistance $\theta_{j,a}$, and the power dissipation P_D as shown below.

Chip temperature $(T_j) = T_a + (P_D \times \theta_{j-a}) (^{\circ}C)$

As a general rule, the chip temperature (T_i) should be kept under 125°C. Note also that the package's thermal resistance varies widely depending on the mounting method and the presence or absence of forced cooling.

QFP

Package		θj-a(℃∕W)		θj-c
Туре	Om/sec	1m/sec	2m/sec	(℃∕W)
QFP12	51	46	44	6
QFP13	48	45	43	6
QFP14	44	41	39	6
QFP15	41	39	37	6
QFP20	36	33	31	6
QFP21	34	31	29	6
QFP22	27	24	23	6
TQFP12	53	47	45	4
TQFP13	47	44	42	4
TQFP14	43	40	38	4
TQFP15	42	36	34	4

SQFN

Package		θ _{j-a} (℃∕W)		θ _{j-c}
Туре	Om/sec	1m/sec	2m/sec	(℃∕W)
SQFN4	42	39	37	5
SQFN5	40	37	35	5
SQFN7	31	28	25	5
SQFN9	26	23	21	5

PBGA

Package		θ _{j-a} (℃∕W)		Ө ј-с
Туре	Om/sec	1m/sec	2m/sec	(℃∕W)
PBGA1U	24	21	20	4

PFBGA

Package		θj-a(℃∕W)					
Туре	Om/sec	1m/sec	2m/sec	(℃∕W)			
PFBGA5	43	40	38	3			
PFBGA6	40	37	35	3			
PFBGA7	34	31	30	3			
PFBGA8	31	28	27	3			
PFBGA10	30	22	21	3			
PFBGA12	24	21	20	3			
PFBGA13	23	21	20	3			
PFBGA14	22	20	19	3			
PFBGA16	20	18	17	3			

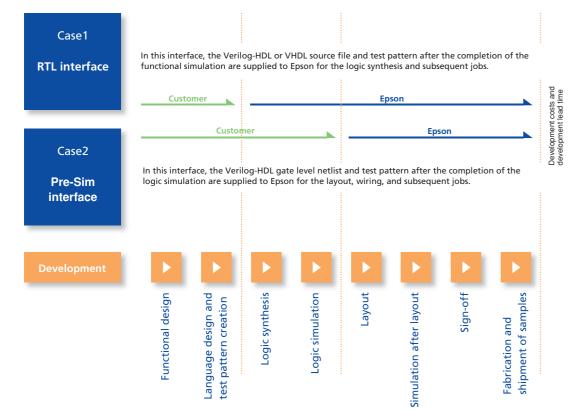
VFBGA

Package		θj-c		
Туре	Om/sec	1m/sec	2m/sec	(℃∕W)
VFBGA4	48	45	43	3
VFBGA5	43	40	38	3
VFBGA6	40	37	35	3
VFBGA7	34	31	30	3
VFBGA8	31	28	27	3
VFBGA10	30	22	21	3

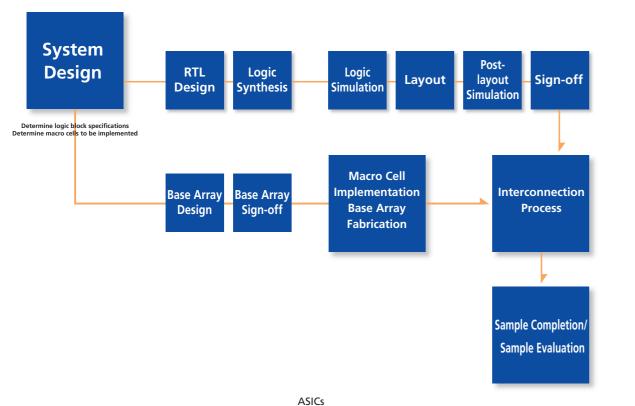
• Values listed above are typical values, but the thermal resistance can easily vary depending on conditions. Allow the margin of Max. $\pm 15^{\circ}$ C/W at θ j-a and Max. ±3°C/W at θj-c

• OFP, OFN, PBGA Implementation board: JEDEC standard board (114.3 x 76.2 x 1.6mm, 4 layers)

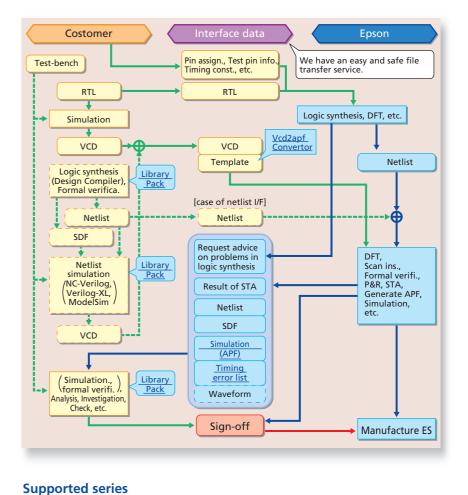
• PFBGA, VFBGA


Implementation board: (114.5 x 101.5 x 1.6mm, 4 layers)

• Values listed above are shown only for reference, as they are not guantitative values.


User Interface ASICs

Development Flow


In order to flexibly comply with the customer's design stages, Epson offers two types of user interfaces. The development lead time and development costs are determined by the interface of your choice.

Design of Embedded Array Chips

Interface Flow

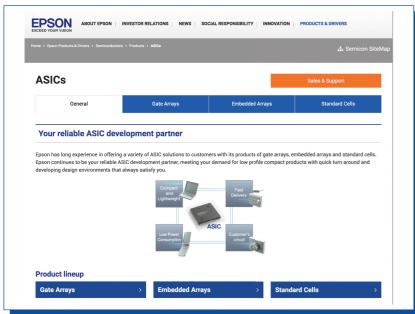
	Supported series
	Technology
Library Pack	Gate Array
	Embedded Array
	Standard cell
	Supported tools
	Category

Category	Tool name
Logic synthesizer	Design Cor
Simulator	Verilog-XL,

0.35µm	0.25µm	0.15µm
S1L50000 S1L5V000	S1L60000	-
S1X5V000 S1X50000	S1X60000	(S1X80000)
-	S1K60000	S1K80000

npiler

, NC-Verilog, ModelSim(Verilog), ModelSim(VHDL)*


*: Not available for S1L5V000, S1X5V000, S1X80000, S1K80000 series

ASICs Epson ASIC Website

Epson Website Presents ASIC product information

<global.epson.com/products_and_drivers/semicon/products/asic/>

<ASIC HP>

NOTICE

The content of this document is subject to change without notice.

- This document may not be copied, reproduced, or used for any other purpose, in whole or in part, without the consent of Seiko Epson Corporation("Epson"). 1. 2. latest information.
- 4. Epson is committed to constantly improving quality and reliability, but semiconductor products in general are subject to malfunction and failure. Customers using Epson products assume responsibility for ensuring that their hardware, software, and systems are designed with essential safety to ensure that any malfunction
- 5. Epson has prepared this document carefully and accurately as much as possible, but Epson does not guarantee that the information presented herein is error-free.
- Epson assumes no responsibility for any damages caused by the customers resulting from information errors in this document. No dismantling, analysis, reverse engineering, modification, alteration, adaptation, reproduction, etc., of Epson products is allowed
- representative in advance.

 - Space equipment (artificial satellites, rockets, etc.)
 Transportation vehicles and their control equipment (automobiles, aircraft, trains, ships, etc.) Medical equipment intended for maintaining life
 - Relay equipment to be placed on sea floor
 - Power station control equipment
 - Disaster or crime prevention equipment Traffic control equipment
 - Financial equipment
 - Other applications requiring similar levels of reliability as the above
- Epson products listed in this document and their associated technologies may not be used in equipment or systems that are prohibited to manufacture, use or 8. sell under the laws, regulations, or rules in Japan or any other countries. Furthermore, Epson products and their associated technologies may not be used for the development, etc., of weapons of mass destruction, for military uses, or other military applications. If exporting Epson products or their associated technologies, be and follow the required procedures as provided by the relevant laws and ordinances.
- Epson assumes no responsibility if our products are used in violation of conditions listed in this document and such use results in damage.
- Epson assumes no responsibility if customers transfer, loan, etc., our products to a third party and these results in damage For more details or other concerns about this document, contact our sales representative. 10 11.
- 12. Company names and product names listed in this document are trademarks or registered trademarks of their respective companies.

©Seiko Epson Corporation 2019

[Registered trademarks, trademarks, and company names]

Design Compiler® : Synopsys Inc. in U.S.A

NC-Verilog[®] : Cadence Design Systems Inc. in U.S.A. Compact Flash[®] : Western Digital Technologies Inc. in U.S.A.

ARM® and Cortex® are the registered trademarks of ARM Limited in the EU and other countries SuperFlash® Technology : SST UK Ltd. in U.K.

Other brand names and product names are trademarks or registered trademarks of their respective owners.

Before purchasing or using Epson products, check with our sales representative for the latest information. Always consult Epson's web site or other sources for the

3. Information provided in this document concerning application circuits, programs, usage, etc., are for reference only. Epson makes no guarantees against any infringements of or damages to a third party intellectual property rights or any other rights resulting from the information. Epson does not give any licenses to use the intellectual property rights or any other rights of a third party or Epson under this document.

or failure of Epson products would not cause harm to life or health or cause damage to property. During design of the customers' products using Epson products, check the latest information of Epson products (in this document, specifications, data sheets, manuals, Epson's web site, etc.) and comply with the latest information. If using information from technical content, programs, algorithms, examples of application circuits, or other information indicated in product data, schematics, tables, etc., from the above materials, etc., the customers should evaluate their own individual products and overall systems thoroughly and decide whether to use Epson products with the products and systems at their own responsibility.

Epson products are intended for use in general applications (office equipment, communications equipment, measuring instruments, home electronics, etc.) and applications individually listed in this document. Our products are not intended for use in the applications specified below where particular quality or reliability is required or where a malfunction or failure could cause harm to life or health or serious damage to property or have a serious impact on society. Customers wishing to use our products in any of the following specified applications (other than applications individually listed in this document) should contact our sales

sure to comply with the Foreign Exchange and Foreign Trade Control Act in Japan and other export-related laws and ordinances in Japan and any other countries