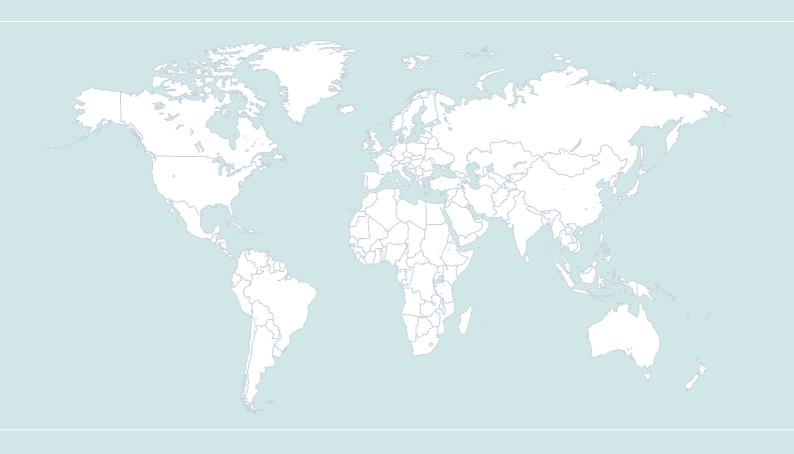


Manual de sistema



Sistema de recuperación de energía de red y conexión de circuito intermedio

Sistema de recuperación de energía de red MOVIDRIVE® MDR60A/61B

Convertidor de corriente de motor MOVIDRIVE® MDX62B

Edición 06/2011 16829700 / ES

Índice

1	Desc	ripcion del sistema	6
	1.1	Tipos de conexiones de circuito intermedio	6
	1.2	Conexión de circuito intermedio sin el sistema de recuperación de energía de red MOVIDRIVE® MDR60A/61B	7
	1.3	Conexión de circuito intermedio con el sistema de recuperación de energía de red MOVIDRIVE® MDR60A/61B	8
	1.4	Conexión de circuito intermedio con módulo de freno	
2	Dato	s técnicos de la unidad básica	12
	2.1	Homologación CE, aprobación UL y certificación C-Tick	12
	2.2	Datos técnicos generales	
	2.3	Familia de equipos MOVIDRIVE® MDR60A/61B, tamaños 2 a 7	15
	2.4	Radio de flexión mínimo (EN 61800-5-1)	
	2.5	MOVIDRIVE® MDR60A0150/0370 tamaño 2 y tamaño 3	
	2.6	MOVIDRIVE® MDR60A0750/1320 tamaño 4 y tamaño 6	
	2.7	MOVIDRIVE® MDR61B1600/2500 de tamaño 7	
	2.8	MOVIDRIVE® MDX62B1600/2000/2500 de tamaño 7	
	2.9	Dimensiones	22
3	Dato	s técnicos de las reactancias y filtros	28
	3.1	Opción inductancias tipo ND.	28
	3.2	Opción reactancia de circuito intermedio tipo ZD	30
	3.3	Opción filtro de red tipo NF	33
4	Dato	s técnicos: Accesorios externos	37
	4.1	Opción protección contra contacto accidental DLB11B	37
	4.2	Opción protección contra contacto accidental DLB31B	
		(para el sistema de recuperación de energía de red MDR61B)	38
	4.3	Opción zócalo de montaje DLS31B (para el sistema de recuperación de energía de red MDR61B)	39
	4.4	Opción kit de conexión DLA31B (para el sistema de recuperación de energía de red MDR61B)	40
	4.5	Opción canal de aire DLK31B (sistema de recuperación de energía de red MDR61B)	41
	4.6	Opción conexión de circuito intermedio DLZ11B (para el tamaño 7)	
	4.7	Opción adaptador de circuito intermedio 2Q DLZ12B (para MDX61/62B de tamaño 7)	
	4.8	Opción adaptador de circuito intermedio 4Q DLZ14B (para MDX61B/62B de tamaño 7)	
	4.9	Opción conexión de circuito intermedio DLZ31B (para el tamaño 7)	
5	Pará	metros para MDR61B1600/2500	46
•	5.1	Vista general parámetros	
	5.2	Explicación de los parámetros	
		· · · · · · · · · · · · · · · · · · ·	_

Índice

6	Plani	ficacion	58
	6.1	Conexión de circuito intermedio sin sistema de recuperación de energía de red	58
	6.2	Conexión de circuito intermedio con sistema de recuperación de energía de red	62
	6.3	Conexión de circuito intermedio y fusibles de circuito intermedio	75
	6.4	Selección de la resistencia de frenado BW / BWT / BWP	79
	6.5	Instalación conforme a las medidas de compatibilidad electromagnética (CEM) según EN 61800-3	85
7	Indic	aciones generales	89
	7.1	Uso de la documentación	
	7.2	Estructura de las notas de seguridad	89
	7.3	Derechos de reclamación en caso de defectos	
	7.4	Exclusión de responsabilidad	
	7.5	Derechos de autor	
	7.6	Nombres de productos y marcas	
8	Nota	s de seguridad	91
	8.1	Información general	
	8.2	Grupo de destino	
	8.3	Uso indicado	
	8.4	Transporte, almacenamiento	
	8.5	Instalación	
	8.6	Conexión eléctrica	
	8.7	Desconexión segura	
	8.8	Funcionamiento	
9	Estru	ictura del equipo	95
	9.1	Designación de modelo, placa de características y contenido de suministro	
	9.2	Volumen de suministro	
	9.3	Tamaño 2	
	9.4	Tamaño 3	
	9.5	Tamaño 4	
	9.6	Tamaño 6	
	9.7	Tamaño 7	
	9.7 9.8	Convertidor de corriente a motor MOVIDRIVE® MDX62B tamaño 7	
10		lación (MDR60A0150/0370/0750 y MDR61B1600/2500)	
	10.1	Indicaciones de instalación	
	10.2	Instalación conforme a UL	
	10.3	Descarga de tracción	
	10.4	Esquemas de conexiones	
	10.5	Transformación en una fuente de alimentación IT	
	10.6	Protección contra contacto accidental de las bornas de potencia	
	1() /	Volumen de suministro opcional del tamaño 7	131

Índice

11 Pues	sta en marcha (MDR60A0150/0370/0750 y MDR61B1600/2500)	144
11.1	Evaluación del mensaje de disponibilidad para el funcionamiento	144
11.2	Ajuste de los parámetros P52_ "Control de desconexión de red"	
11.3	1 5	
11.4	Funcionamiento de MOVITOOLS® MotionStudio	
11.5	Proceso de carga del circuito intermedio de MOVIDRIVE® MDR61B	
11.6	Ajuste para el proceso de control CFC/Servo	152
12 Fund	cionamiento (MDR60A0150/0370/0750 y MDR61B1600/2500)	154
12.1	Comportamiento funcional	
12.2	Indicaciones de funcionamiento	155
12.3	Asignación de teclas DBG60B	157
12.4	Tarjeta de memoria	158
13 Fund	cionamiento (MDR60A0150/0370/0750 y MDR61B1600/2500)	159
13.1	Información de fallos	
13.2	Mensajes y lista de fallos	
13.3	• •	
4.4 Intro	ducción (MDR60A1320-503-00)	
14 intro	·	
	Términos utilizados	
14.2		
	•	
	s de seguridad (MDR60A1320-503-00)	
15.1	Indicaciones generales	171
16 Dato	s técnicos (MDR60A1320-503-00)	177
16.1	Características	177
16.2	Datos técnicos generales	177
16.3	Datos de medición	178
16.4	Corriente máxima admisible	178
16.5	Fusibles y secciones de cable	179
17 Insta	ılación (MDR60A1320-503-00)	180
	Instalación mecánica	400
17.2	Indicaciones para la instalación eléctrica	181
17.3		
17.4	Instalación en un sistema de accionamiento típico CE	188
18 Pues	sta en marcha (MDR60A1320-503-00)	191
18.1	Primera conexión	
18.2		
_		
	iguración (MDR60A1320-503-00)	
	cionamiento y servicio (MDR60A1320-503-00)	
20.1	Reset	
20.2	Indicaciones de funcionamiento	
20.3	Mantenimiento	200
Índic	o de nalabras clave	201

Descripción del sistema

Tipos de conexiones de circuito intermedio

1 Descripción del sistema

Los tipos de conexiones de circuito intermedio con o sin recuperación de la energía de red descritos en esta documentación son válidos para:

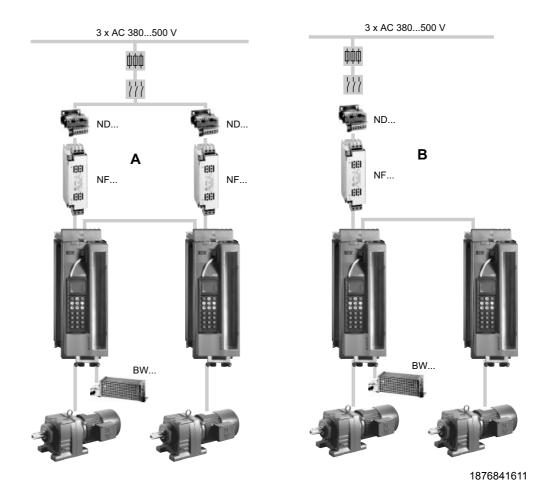
- MOVIDRIVE[®] MD 60A
- MOVIDRIVE® MDX60B/61B/62B
- MOVIDRIVE[®] compact
- MOVITRAC® B (MC07B055-5A3-4 ... 750-503-4)

Los siguientes capítulos contienen únicamente la descripción del variador vectorial $\mathsf{MOVIDRIVE}^{\circledR}.$

1.1 Tipos de conexiones de circuito intermedio

En principio se diferencia entre los siguientes tipos de conexiones de circuito intermedio:

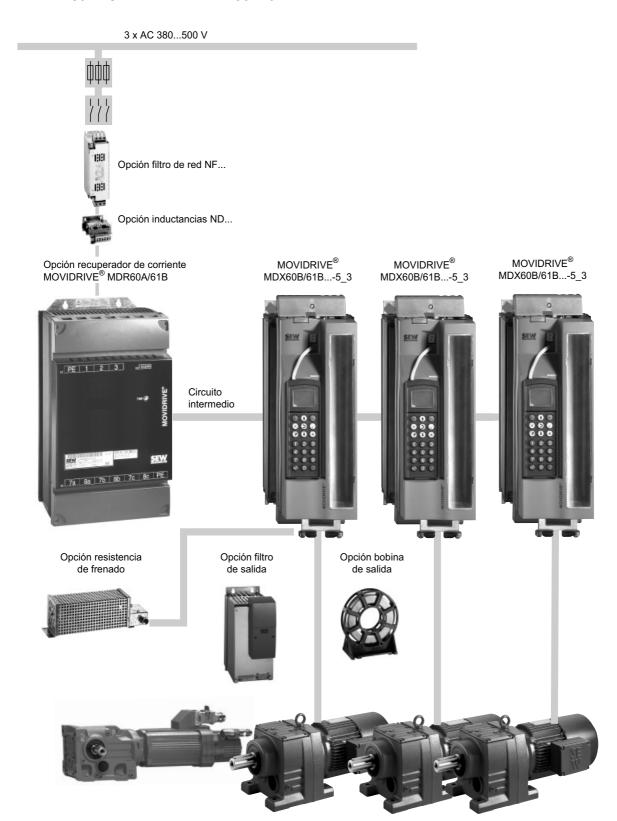
- Conexión de circuito intermedio sin el sistema de recuperación de energía de red MOVIDRIVE[®] MDR60A/61B.
- Conexión de circuito intermedio con el sistema de recuperación de energía de red MOVIDRIVE[®] MDR60A/61B como alimentación y recuperación de energía central.
- Conexión de circuito intermedio con el sistema de recuperación de energía de red MOVIDRIVE[®] MDR60A0150 operando módulo de freno.



1.2 Conexión de circuito intermedio sin el sistema de recuperación de energía de red MOVIDRIVE® MDR60A/61B

En el caso de no disponer del sistema de recuperación de energía de redMOVIDRIVE® MDR60A/61B es posible conectar entre sí como máximo 2 variadores vectoriales MOVIDRIVE® a través del circuito intermedio.

La conexión de circuito intermedio sin sistema de recuperación de energía de red $MOVIDRIVE^{\textcircled{\tiny B}}$ MDR60A/61B podrá realizarse con los siguientes tipos de conexión (\rightarrow figura siguiente):


- Tipo de conexión A: Los dos convertidores se conectan a la red de alimentación.
- Tipo de conexión B: Sólo un convertidor se conecta a la red de alimentación.

Conexión de circuito intermedio con el sistema de recuperación de energía de red MOVIDRIVE® MDR60A/61B

1.3 Conexión de circuito intermedio con el sistema de recuperación de energía de red MOVIDRIVE[®] MDR60A/61B

Descripción del sistema

En el caso de disponer de un sistema de recuperación de energía de red MOVIDRIVE® MDR60A/61B como alimentación/recuperación de energía central preconectada es posible conectar entre sí más de 2 variadores vectoriales

> **MOVIDRIVE**[®] a través del circuito intermedio. El número permitido de convertidores deberá calcularse en base a las indicaciones de planificación.

Conexión de circuito intermedio con el sistema de recuperación de energía de red MOVIDRIVE® MDR60A/61B

El sistema de recuperación de energía de red MOVIDRIVE® MDR60A/61B es una alternativa a las resistencias de frenado en el caso de utilizar variadores vectoriales MOVIDRIVE® trabajando como generadores. La condición para ello es contar con una red de alimentación estable.

El sistema de recuperación de energía de red MOVIDRIVE® MDR60A/61B alimenta al circuito intermedio de tensión continua del variador vectorial MOVIDRIVE® con energía motriz de la red e introduce energía generadora desde el circuito intermedio de tensión continua de nuevo en la red.

red MOVIDRIVE® recuperación energía los sistemas de de de MDR60A0150/0370/0750 (tamaños 2 - 4) usted puede bloquear con la borna X3:3 (bloqueo) el convertidor de corriente de la recuperación de energía. En los sistemas de recuperación de energía de red MOVIDRIVE® MDR60A1320 (tamaño 6 – a partir del número de serie DCV200), el bloqueo se efectúa a través de la borna A1/A2. El bloqueo sólo debe efectuarse si está asegurado que todos los accionamientos conectados están parados, es decir, que no se puede devolver energía generadora a la red. La señal de preparado de la recuperación de la energía de red se mantiene activa.

i

NOTA

Tenga en cuenta las siguientes indicaciones en el control de proceso de su

MOVIDRIVE® MDR60A0150/0370/0750/132 (tamaños 2 – 4 y el tamaño 6 a partir del número de serie DCV200) señaliza también en el estado bloqueado el estado de funcionamiento "Preparado".

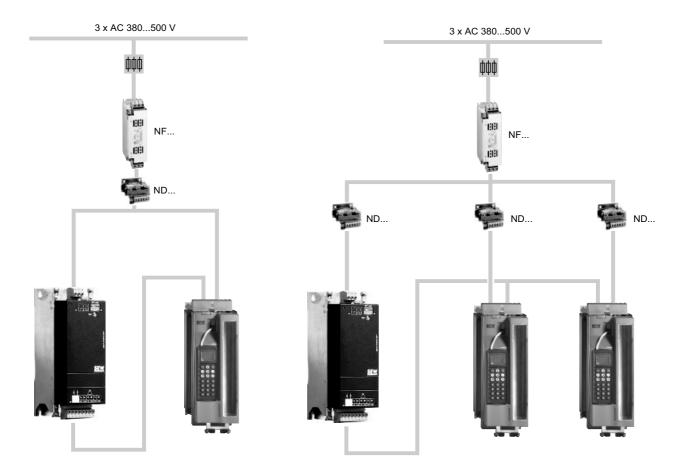
Gracias al bloqueo del convertidor de corriente en funcionamiento en vacío, MOVIDRIVE® MDR60A genera menos pérdidas y funciona con menos reacciones a la red.

1.3.1 Características del sistema de recuperación de energía de red en comparación con un convertidor con resistencia de frenado

- Balance energético: La energía generadora se devuelve a la red en lugar de perderse convertida en calor.
- Ahorro en la instalación en el caso de varios convertidores (conexiones de red y resistencia de frenado). Para la parada regulada, incluso en el caso de fallo en la red, es necesaria no obstante una resistencia de frenado.
- Si antes fue necesario instalar la resistencia de freno en el armario de conexiones, ahora se produce un ahorro de espacio en el armario de conexiones y de potencia de ventilación.

1.3.2 Funciones de protección y vigilancia

- Vigilancia y protección contra sobrecarga térmica.
- Reconocimiento de fallo en la red dentro de un semiciclo de red.
- Protección contra sobretensiones.


Q

Descripción del sistema

Conexión de circuito intermedio con módulo de freno

1.4 Conexión de circuito intermedio con módulo de freno

El sistema de recuperación de energía de red MOVIDRIVE[®] MDR60A0150-503-00 (referencia de pieza 18252710), además de como alimentación y recuperación de energía central, también puede emplearse como módulo de freno en la conexión de circuito intermedio.

1.4.1 Características del tipo de conexión módulo de freno en comparación con la conexión de circuito intermedio con alimentación/recuperación de energía central.

- Suministro de energía del circuito intermedio a través del rectificador de entrada del convertidor
- Recuperación de la energía generadora a través del sistema de generación de energía de red MDR60A0150-503-00
- · Planificación del convertidor en función de la carga motora
- Concepción del sistema de recuperación de energía de red en función del potencial de energía generadora de la aplicación

1.4.2 Características del módulo de freno en comparación con un convertidor con resistencia de frenado

- Balance energético: La energía generadora se devuelve a la red en lugar de perderse convertida en calor
- Ahorro de resistencias de frenado en la instalación. Para la parada regulada, incluso en el caso de fallo en la red, es necesaria no obstante una resistencia de frenado.
- Si antes fue necesario instalar la resistencia de freno en el armario de conexiones, ahora se produce un ahorro de espacio en el armario de conexiones y de potencia de ventilación.

1.4.3 Funciones de protección y vigilancia

- · Vigilancia y protección contra sobrecarga térmica.
- Reconocimiento de fallo en la red dentro de un semiciclo de red.
- · Protección contra sobretensiones.

Homologación CE, aprobación UL y certificación C-Tick

2 Datos técnicos de la unidad básica

2.1 Homologación CE, aprobación UL y certificación C-Tick

2.1.1 Marcado CE

· Directiva de baja tensión

Los variadores vectoriales MOVIDRIVE® MDX60B/61B y los sistemas de recuperación de la corriente de red MOVIDRIVE® MDR60A/61B cumplen los requisitos de la directiva de baja tensión 2006/95/CE.

· Compatibilidad electromagnética (CEM)

Los variadores vectoriales y los sistemas de recuperación de la corriente de red MOVIDRIVE® han sido diseñados como componentes que se montarán en máquinas e instalaciones. Cumplen con la normativa de productos CEM EN 61800-3 "Accionamientos eléctricos de velocidad variable". Siempre y cuando los componentes SEW cumplan con las instrucciones de instalación, las máquinas e instalaciones cumplirán con las condiciones de homologación CE conforme a la Directiva de compatibilidad electromagnética 2004/108/CE.

 El cumplimiento de las condiciones de las clases de valor límite C2 o C3 se comprobó en un sistema de accionamiento típico en la CE. SEW-EURODRIVE le proporcionará si así lo desea informaciones detalladas al respecto.

La marca CE en la placa de características indica el cumplimiento de la directiva de baja tensión 2006/95/CE.

2.1.2 UL- / cUL / GOST-R

La familia de equipos MOVIDRIVE® completa ha recibido la autorización UL y cUL (EE.UU.), así como el certificado GOST-R (Rusia). MOVIDRIVE® MDR60A1320-503-00 es el único aparato que no cuenta con ninguna aprobación UL o cUL. La cUL es equivalente a la aprobación CSA.

2.1.3 C-Tick

La aprobación C-Tick se ha otorgado a toda la familia de equipos MOVIDRIVE[®]. C-Tick certifica la conformidad con las normas de la ACMA (Australian Communications and Media Authority).

2.2 Datos técnicos generales

2.2.1 Sistema de recuperación de la corriente de red MOVIDRIVE® MDR60A

MOVIDRIVE® MDR60A	0150-503-00 (tamaño 2) 0370-503-00 (tamaño 3) 0750-503-00 (tamaño 4)	1320-503-00 (tamaño 6)
Resistencia a interferencias	Conforme a EN 61800-3	Conforme a EN 61000-6-1 y EN 61000-6-2
Emisión de interferencias con instalación conforme a la compatibilidad electromagnética	Conforme a EN 61800-3:	Conforme a EN 61000-6-4 con filtro de red NF300-503
Temperatura ambiental θ _U Desclasificación de temperatura ambiente	0 °C – +40 °C Reducción I _N : 3 % I _N por K hasta máx. 60 °C	0 °C – +40 °C Reducción I_N : 3 % I_N por C hasta máx. 55 °C
Clase climática	EN 60721-3-3, clas	se 3K3
Temperatura de almacenamiento ¹⁾ ϑ _L	-25 °C - +70 °C (EN 60721-3-3, clase 3K3)	–25 °C – +55 °C (EN 60721-3-3, clase 3K3)
Tipo de refrigeración (DIN 51751)	Refrigeración externa (Ventilador regulado por la temperatura, umbral de respuesta 50 °C)	Refrigeración externa (Ventilador regulado por la temperatura, umbral de respuesta 45 °C)
Índice de protección tamaño 2 EN 60529 tamaño 3 (NEMA1) tamaño 4	IP20 IP20 IP00 (conexiones de potencia) IP10 (conexiones de potencia) • con cubierta de plexiglás montada y suministrada de serie • con tubo termoretráctil montado (no incluido en el contenido de suministro) IP20 • con protección contra contacto accidental incorporada DLB11B	IP20
Modo de funcionamiento	Funcionamiento continuo (EN	60149-1-1 y 1-3)
Categoría de sobretensión	III según IEC 60664-1 (V	/DE 0110-1)
Clase de contaminación	2 según IEC 60664-1 (V	DE 0110-1)
Altura de emplazamiento	Para h ≤ 1000 m sin restricciones. Para h ≥ 1000 m son de aplicación las siguientes restricciones: • De 1000 m hasta máx. 4000 m: - reducción de I _N en un 1 % por cada 100 m • De 2000 m (6562 ft) hasta máx. 4000 m (13120 ft) - A partir de 2000 m la desconexión segura de conexiones de potencia y conexiones electrónicas no queda garantizada. Para ello se requieren medidas externas (IEC 60664-1 / EN 61800-5-1) - Es necesario conectar un sistema previo de protección contra sobretensiones para reducir las sobretensiones de la categoría III a la categoría II.	h ≤ 1000 m: Sin limitaciones De 1000 m hasta máx. 4000 m: Reducción I _N : 0,5 % por 100 m

¹⁾ En caso de almacenamiento prolongado, conectar la unidad cada 2 años durante al menos 5 min a la tensión de red puesto que de lo contrario podría reducirse la vida útil de la unidad.

Datos técnicos generales

2.2.2 Sistema de recuperación de la corriente de red MOVIDRIVE® MDR61B

MOVIDRIVE® MDR61B	1600-503-00/L (tamaño 7) 2500-503-00/L (tamaño 7)		
Resistencia a interferencias	Conforme a EN 61800-3		
Emisión de interferencias con instalación conforme a la compatibilidad electromagnética	Conforme a EN 61800-3: con filtro de red NF600-503		
Temperatura ambiental ϑ _U Desclasificación de temperatura ambiente	0 °C $-$ +50 °C para I _D = 100 % I _{CI} 0 °C $-$ +40 °C para I _D = 125 % I _{CI} 2.5 % I _{CI} por K entre 40 °C $-$ +50 °C 3 % I _{CI} por K entre 50 °C $-$ +60 °C		
Clase climática	EN 60721-3-3, clase 3K3		
Temperatura de almacenamiento ¹⁾ ϑ _L	–25 °C – +70 °C (EN 60721-3-3, clase 3K3)		
Tipo de refrigeración (DIN 51751)	Refrigeración externa (Ventilador regulado por la temperatura, umbral de respuesta 50 °C)		
Tipo de protección EN 60529 (NEMA1)	IP00 IP20 (conexiones de potencia) con protección contra contacto accidental incorporada DLB31B		
Modo de funcionamiento	Funcionamiento continuo (EN 60149-1-1 y 1-3)		
Categoría de sobretensión	III según IEC 60664-1 (VDE 0110-1)		
Clase de contaminación	2 según IEC 60664-1 (VDE 0110-1)		
Altura de emplazamiento	Para h ≤ 1000 m sin restricciones. Para h ≥ 1000 m son de aplicación las siguientes restricciones: • De 1000 m hasta máx. 4000 m: — reducción de I _N en un 1 % por cada 100 m		
	De 2000 m (6562 ft) hasta máx. 4000 m (13120 ft) A partir de 2000 m la desconexión segura de conexiones de potencia y conexiones electrónicas no queda garantizada. Para ello se requieren medidas externas (IEC 60664-1 / EN 61800-5-1) Es necesario conectar un sistema previo de protección contra sobretensiones para reducir las sobretensiones de la categoría III a la categoría II.		

¹⁾ En caso de almacenamiento prolongado, conectar la unidad cada 2 años durante al menos 5 min a la tensión de red puesto que de lo contrario podría reducirse la vida útil de la unidad.

Familia de equipos MOVIDRIVE® MDR60A/61B, tamaños 2 a 7 2.3

La siguiente figura muestra los sistemas de recuperación de la energía de red MOVIDRIVE $^{\circledR}$ MDR60A/61B, tamaños 2 a 7

Radio de flexión mínimo (EN 61800-5-1)

2.4 Radio de flexión mínimo (EN 61800-5-1)

Conforme a EN 61800-5-1, la distancia entre una borna de conexión de potencia y un obstáculo hacia el cual el alambre esté dirigido después de salir de la borna de conexión de potencia debe coincidir como mínimo con el valor definido en la siguiente tabla.

Sección transversal del cable en mm²	Radio mínimo de flexión en mm			
	Alan	nbres por borna de con	exión	
	1	2	3	
10 16	40	-	-	
25	50	-	-	
35	65	-	-	
50	125	125	180	
70	150	150	190	
95	180	180	205	
120	205	205	230	
150	255	255	280	
185	305	305	330	
240	305	305	380	

2.5 MOVIDRIVE® MDR60A0150/0370 tamaño 2 y tamaño 3

MOVIDRIVE [®] MDR60A Versión estándar Versión con tarjetas de circuitos impresos pintadas	Tamaño 2 0150-503-00 0150-503-00/L	Tamaño 3 0370-503-00 0370-503-00/L		
Nº de referencia	1825 271 0 1825 272 9	826 658 1 829 672 3		
ENTRADA				
Tensión nominal de red (conforme a EN 50160)	3 × 380	3 × 380 500 V _{CA}		
Frecuencia de red f _{Red}	50 Hz - 60	50 Hz - 60 Hz ±5 %		
Potencia nominal de conexión P _N	15 kW	37 kW		
Corriente nominal I _{Red} (para U _{Red} = 3 × 400 V _{CA})	29 A _{CA}	66 A _{CA}		
BORNAS ELECTRÓNICAS				
Entradas binarias Resistencia interna	compatible con PLC (EN 61131), tiempo d $R_i \approx 3.0 \text{ k}\Omega$, $I_E \approx 10 \text{ mA}$	e exploración 1 ms		
Nivel de señal	+13 V - +30 V = "1" = contacto cerrado -3 V - +5 V = "0" = contacto abierto			
Salidas binarias	Compatible con PLC (EN 61131-2), tiempo cortocircuito, I _{máx} = 50 mA	o de respuesta 1 ms, resistente al		
Nivel de señal	"0"=0 V, "1"=+24 V, atención: no conec	te ninguna tensión externa		
CIRCUITO INTERMEDIO				
Potencia aparente de salida S_A (para $U_{Red} = 3 \times 380 - 500 V_{CA}$)	25 kVA	50 kVA		
Tensión de circuito intermedio U_{CI} (para corriente nominal de red I_{Red})	560 - 76	80 V _{CC}		
Corriente nominal del circuito intermedio I _{CI} (para corriente nominal de red I _{Red})	35 A _{CC}	70 A _{CC}		
Corriente máx. de circuito intermedio I _{CI_máx}	53 A _{CC}	105 A _{CC}		
GENERAL				
Pérdida de potencia a P _N P _{Vmá}		950 W		
Consumo de aire de refrigeración	100 m ³ /h	180 m ³ /h		
Conexión de las bornas de potencia X1, X Par de apriete admisible sección de cable permitida	Bornes separables en fila Puntera de cable DIN 46228 1,8 Nm (16 lb-in) 6 mm ² (AWG9) PE: M4 con 1,5 Nm (13 n-lb)	Tornillo con arandela incorporada M6 3,5 Nm (31 lb.in) 25 mm ² (AWG4)		
Conexión de bornas electrónicas X3	Sección de cable permitida: un conductor por chapa: 0,20 – 2,5 mi dos conductores por terminal: 0.25 –	m ² (AWG 24 – 13) 1 mm ² (AWG 23 – 17)		
Masa	4 kg (8.8 lb)	16 kg (35 lb)		
Medidas An x Al x Pr	118 mm × 320 mm × 127 mm (4,65 in × 12,6 in × 5,0 in)	200 mm × 465 mm × 221 mm (7.87 in × 18.3 in × 8.7 in)		
Inductancia (siempre necesaria)	ND045-013 L _N = 0.1 mH Ref. de pieza 826 013 3	ND085-013 L _N = 0.1 mH Ref. de pieza 826 014 1		
Filtro de entrada (opcional)	NF035-503 hasta 15 kW N° de referencia 827 128 3 NF048-503 hasta 22 kW (15 kW × 125 %) N° de referencia 827 117 8	NF085-503 N° de referencia 827 415 0		
Para MOVIDRIVE® MDX60B/61B5_3	0005 – 0150	0005 – 0370		
Fusible de red recomendado	63 A	100 A		

Datos técnicos de la unidad básica MOVIDRIVE[®] MDR60A0750/1320 tamaño 4 y tamaño 6

MOVIDRIVE® MDR60A0750/1320 tamaño 4 y tamaño 6 2.6

MOVIDRIVE [®] MDR60A Versión estándar Versión con tarjetas de circuitos impresos pintadas	Tamaño 4 0750-503-00 0750-503-00/L	Tamaño 6 1320-503-00 ¹⁾ –	
Nº de referencia	826 556 9 829 673 1	827 952 7	
ENTRADA			
Tensión nominal de red U _{Red} (conforme a EN 50160)	3 × 380 .	500 V _{CA}	
Frecuencia de red f _{Red}	50 Hz - 60 Hz ±5 %	40 Hz - 60 Hz ±10 %	
Potencia nominal de conexión P _N	75 kW	160 kW	
Corriente nominal I_{Red} (para $U_{Red} = 3 \times 400 V_{CA}$)	117 A _{CA}	260 A _{CA}	
BORNAS ELECTRÓNICAS			
Entradas binarias Resistencia interna	Sin potencial (optoacoplador), compatible con PLC (EN 61131), periodo de muestreo 1 ms $R_i \approx 3.0 \text{ k}\Omega$, $I_E \approx 10 \text{ mA}$	-	
Nivel de señal	+13 V - +30 V = "1" = Contacto cerrado -3 V - +5 V = "0" = Contacto abierto		
Salidas binarias	Compatible con PLC (EN 61131-2), tiempo de respuesta 1 ms, resistente al cortocircuito, I _{máx} = 50 mA		
Nivel de señal	"0"=0 V, "1"=+24 V, Atención: No conecte ninguna tensión externa.		
CIRCUITO INTERMEDIO			
Potencia aparente de salida S _A (para U _{Red} = 3 × 380 – 500 V _{CA})	90 kVA	175 kVA	
Tensión de circuito intermedio U _{CI}	560 - 780 V _{CC}		
Corriente nominal del circuito intermedio (para corriente nominal de red I _{Red})	141 A _{CC}	324 A _{CC}	
Corriente máx. de circuito intermedio I _{CI_máx} (para corriente nominal de red I _{Red})	212 A _{CC}	Motor: • 486 A _{CC} Generador: • 410 A _{CC}	
INFORMACIÓN GENERAL			
Pérdida de potencia a P _N P _{Vmáx}		2400 W	
Consumo de aire de refrigeración	360 m ³ /h	880 m ³ /h	
Conexión de las bornas de potencia X1, X2 (L1, L2, L3 con tamaño 6) Par de apriete admisible sección de cable permitida	Perno de conexión M10 14 Nm (120 in-lb) 70 mm ² (AWG2/0)	Perno de conexión M10 25 – 30 Nm (220 – 265 in-lb) ²⁾ 185 mm ² (AWG6/0)	
Conexión de las bornas de potencia SKS 1 – 3	-	Bornas no conectadas	
Conexión de bornas electrónicas X3 (X2 con tamaño 6)	Sección de cable permitida: un conductor por chapa: 0,20 – 2,5 mm² (AWG 24 – 13) dos conductores por terminal: 0,25 – 1 mm² (AWG 23 – 17)	Sección de cable permitida: • 0,75 – 2,5 mm² (AWG18 – 14) Bornas A1 / A2: • 0,75 – 4 mm² (AWG18 – 12)	
Masa	24 kg (53 lb)	100 kg (220 lb)	
Medidas An x Al x Pr	280 mm × 522 mm × 205 mm (11 in × 20.6 in × 8.07 in)	378 mm × 942 mm × 389,5 mm (14.9 in × 37.1 in × 15.3 in)	
Inductancia (siempre necesaria)	ND200-0033 L _N = 0,03 mH N° de referencia 826 579 8	integrado en la unidad básica	

MOVIDRIVE® MDR60A0750/1320 tamaño 4 y tamaño 6

MOVIDRIVE [®] MDR60A Versión estándar Versión con tarjetas de circuitos impresos pintadas	Tamaño 4 0750-503-00 0750-503-00/L	Tamaño 6 1320-503-00 ¹⁾ -
Filtro de red (opcional)	NF150-503 N° de referencia 827 417 7	NF300-503 Nº de referencia 827 419 3
Para MOVIDRIVE® MDX60B/61B5_3	0005 – 0750	0005 – 1600
Fusible de red recomendado	175 A	500 A

¹⁾ Los Datos técnicos indicados son válidos para unidades con número de serie DCV200xxx. Para las unidades de la serie anterior con número de serie DCV185xxx, tenga en cuenta la documentación suministrada y las indicaciones de la placa de características.

²⁾ Deberá tener en cuenta: No introducir el par de apriete directamente en las bornas L1, L2, L3 y ±UG sino absorberlo con una segunda llave.

Datos técnicos de la unidad básica MOVIDRIVE[®] MDR61B1600/2500 de tamaño 7

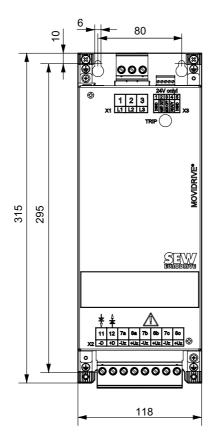
MOVIDRIVE® MDR61B1600/2500 de tamaño 7 2.7

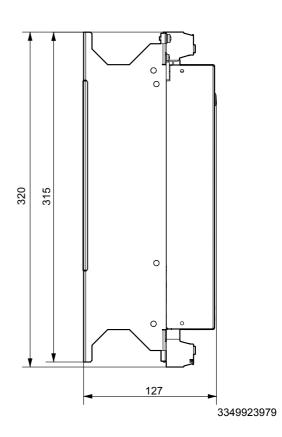
MOVIDRIVE® MDR61B		Tamaño 7		
		1600-503-00/L	2500-503-00/L	
Nº de referencia		1825 095 5	1825 096 3	
ENTRADA				
Tensión nominal de red (conforme a EN 50160)	J _{Red}	3 × 380	. 500 V _{CA}	
Frecuencia de red f _i	Red	50 Hz - 60	O Hz ±5 %	
Potencia nominal de conexión P	'n	160 kW	250 kW	
Corriente nominal I _F (para U _{Red} = 3 × 400 V _{CA})	Red	250 A _{CA}	400 A _{CA}	
BORNAS ELECTRÓNICAS				
Entradas binarias Resistencia interna		Sin potencial (optoacoplador), compatible muestreo 1 ms $R_i \approx 3.0 \text{ k}\Omega$, $I_E \approx 10 \text{ mA}$	7.1	
Nivel de señal		+13 V - +30 V = "1" = contacto cerrado -3 V - +5 V = "0" = contacto abierto		
2 salidas binarias		Compatible con PLC (EN 61131-2), tiemp cortocircuito, I _{máx} = 50 mA		
Nivel de señal		"0"=0 V, "1"=+24 V, atención: no conec	cte ninguna tensión externa	
CIRCUITO INTERMEDIO				
(para U _{Red} = 3 × 380 – 500 V _{CA})	S _A	173 kVA	271 kVA	
Tensión de circuito intermedio U	J _{CI}	620 - 7		
Corriente nominal del circuito intermedio (para corriente nominal de red I _{Red})	CI	255 A _{CC}	407 A _{CC}	
Corriente máx. de circuito intermedio (para corriente nominal de red I _{Red})	CI_máx	382 A _{CC}	610 A _{CC}	
Corriente continua máx. del circuito intermedio I _{CI} (para corriente nominal de red I _{Red})	_Cmáx	318 A _{CC}	508 A _{CC}	
INFORMACIÓN GENERAL				
Pérdida de potencia a P _N P	Vmáx	5000 W	6600 W	
Consumo de aire de refrigeración		1400	m ³ /h	
Conexión de las bornas de potencia L1, L2	2, L3	Pretina de conexión con orificio para M12 Máx. 2 × 240 mm ² Terminal de cable a presión DIN 46235		
Par de apriete		70 Nm (620 lb in)		
Opción a circuito intermedio		DLZ11B / 100 mm (Ref. de pieza: 1 823 193 4) DLZ11B / 200 mm (Ref. de pieza: 1 823 566 2) DLZ11B / 300 mm (Ref. de pieza: 1 823 567 0)		
Conexión de bornas electrónicas X	(2	 Sección de cable permitida: un conductor por chapa: 0,20 - 2,5 mm² (AWG 24 - 12) dos conductores por terminal: 0,25 - 1 mm² (AWG 22 - 17) 	Sección de cable permitida: un conductor por chapa: 0,20 – 2,5 mm² (AWG 24 – 12) 2 conductores por chapa: 0,25 – 1 mm² (AWG 22 – 17)	
Tensión de alimentación externa		Conectar el servicio de apoyo de 24 V a t No hay conexión en el equipo de control.		
Masa		385 kg (849 lb)	475 kg (1047 lb)	
Medidas An x Al	x Pr) mm × 473 mm 7 in × 18.2 in)	
Inductancia de red		integrado en la unidad básica		
Filtro de red (opcional)	NF600-503 Nº de referencia 1 7			
Para MOVIDRIVE® MDX60B/61B5_3	3	0005 – 2500		
Fusible de red recomendado		315 A (gRL/gL) 500 A (gRL/gL)		

2.8 MOVIDRIVE® MDX62B1600/2000/2500 de tamaño 7

MOVIDRIVE® MDX62B	Tamaño 7			
Unidades 2 Q (sin freno chopper) Unidades 4 Q (con freno chopper)	1600-503-2-0T/L 1600-503-4-0T/L	2000-503-2-0T/L 2000-503-4-0T/L	2500-503-2-0T/L 2500-503-4-0T/L	
Nº de referencia	1825 045 9 1825 048 3	1825 046 7 1825 049 1	1825 047 5 1825 050 5	
ENTRADA				
Tensión de circuito intermedio U _{CI}	Alimentación	a través de la unión de cir 537 - 780 V _{CC}	cuito intermedio	
SALIDA				
Potencia aparente de salida ¹⁾ S _N (para U _{Red} = 3 × 380 – 500 V _{CA})	208 kVA	263 kVA	326 kVA	
Corriente nominal de salida ¹⁾ I_N (para $U_{Red} = 3 \times 400 V_{CA}$)	300 A _{CA}	380 A _{CA}	470 A _{CA}	
Corriente continua de salida (= 125 % I_N) I_D (con I_{Red} = 3 × 400 V_{CA} con f_{PWM} = 2,5 kHz)	375 A _{CA}	475 A _{CA}	588 A _{CA}	
Corriente continua de salida (= 100 % I _N) I _D (con U _{Red} = 3 × 400 V _{CA} con f _{PWM} = 2,5 kHz) Rango de temperatura 0 °C – +50 °C	300 A _{CA}	380 A _{CA}	470 A _{CA}	
Limitación de salida I _{máx}		6 I _N , duración en función d	le la utilización	
Limitación interna de corriente	I _{máx} = 0 – 150 % ajustabl	le		
Valor mínimo permitido de resistencia de frenado - R _{BWmín} Valor de resistencia (funcionamiento 4 Q)	1,1 Ω			
Tensión de salida U _A	Tensión de salida U _A Máx. U _{Red}			
Frecuencia PWM f _{PWM}	Ajustable: 2,5 o 4 kHz			
Rango de velocidad / resolución n _A / Δn _A	-6000 - 0 - +6000 rpm / 0,2 rpm a través del rango completo			
INFORMACIÓN GENERAL				
Pérdida de potencia a S _N ²⁾ P _{Vmáx}	3000 W	3600 W	4400 W	
Consumo de aire de refrigeración	1200 m ³ /h		"	
Masa	Versión 2 Q: 260 kg (573 Versión 4 Q: 280 kg (627	,		
Medidas An x Al x Pr	700 mm × 1.490 mm × 4 (27.6 in x 58.7 in x 18.5 in			
Pletinas conductoras X1, X2, X3	Pretina de conexión con orificio para M12 Máx. 2 x 240 mm ² Terminal de cable a presión DIN 46235			
Par de apriete	70 Nm (620 lb in)			
Carga constante Potencia de motor recomendada P _{Mot}	160 kW (215 HP)	200 kW (268 HP)	250 kW (335 HP)	
Carga cuadrática o carga constante sin sobrecarga				
Potencia de motor recomendada P _{Mot}	200 kW (268 HP)	250 kW (335 HP)	315 kW (422 HP)	

¹⁾ Los datos de potencia son válidos para f_{PWM} = 2,5 kHz.


Dimensiones

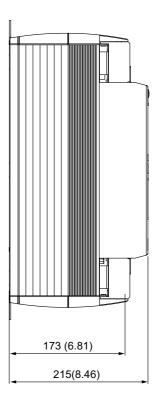

2.9 Dimensiones

2.9.1 MOVIDRIVE® MDR60A0150 de tamaño 2

Al montar la unidad en el armario de conexiones, deje los siguientes espacios libres mínimos:

- Por arriba y por debajo de la unidad 100 mm (3.9 in)
- · No es necesario dejar un espacio libre a los lados


Dimensiones en mm (in)



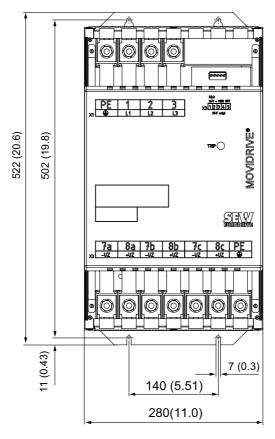
2.9.2 MOVIDRIVE® MDR60A0370 de tamaño 3

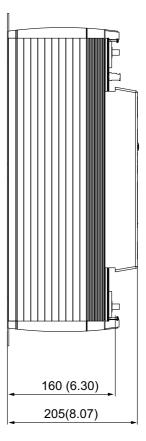
Al montar la unidad en el armario de conexiones, deje los siguientes espacios libres mínimos:

- Por arriba y por debajo de la unidad 100 mm (3.9 in)
- · No es necesario dejar un espacio libre a los lados

1454310923

Dimensiones en mm (in)




Dimensiones

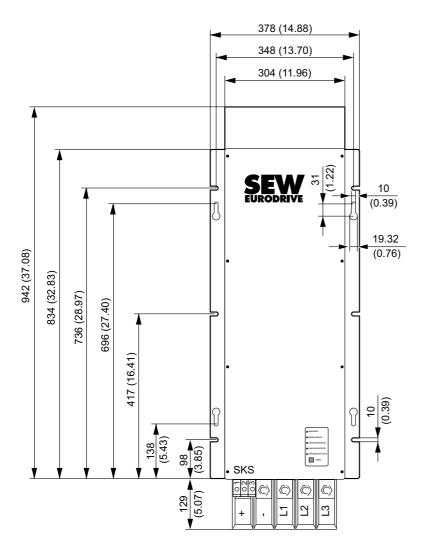
2.9.3 MOVIDRIVE® MDR60A0750 de tamaño 4

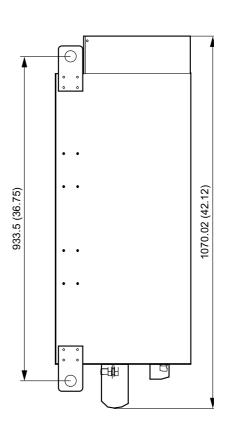
Al montar la unidad en el armario de conexiones, deje los siguientes espacios libres mínimos:

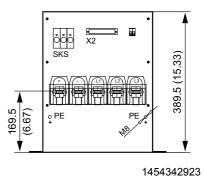
- Por arriba y por debajo de la unidad 100 mm (3.9 in)
- No instalar componentes sensibles a la temperatura tales como contactores o fusibles a menos de los 300 mm (11.8 in) de distancia sobre la unidad
- · No es necesario dejar un espacio libre a los lados

1454339595

Dimensiones en mm (in)



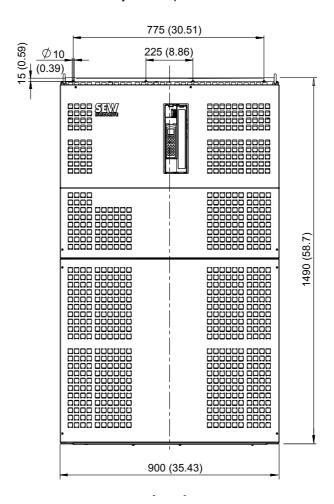


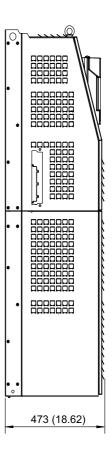

2.9.4 MOVIDRIVE® MDR60A1320 de tamaño 6

Al montar la unidad en el armario de conexiones, deje los siguientes espacios libres mínimos:

- Por encima 100 mm (3.9 in)
- No instalar componentes sensibles a la temperatura tales como contactores o fusibles a menos de los 300 mm (11.8 in) de distancia sobre la unidad.
- · No es necesario dejar espacio libre debajo de la unidad
- A los lados 70 mm (2.8 in)

Dimensiones en mm (in)

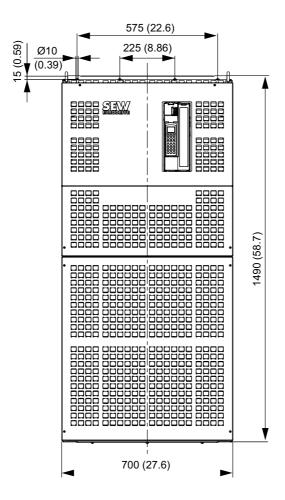


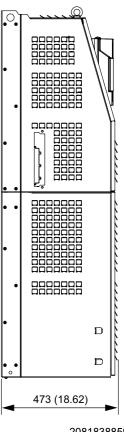

Dimensiones

2.9.5 MOVIDRIVE® MDR61B1600/2500 de tamaño 7

Al montar la unidad en el armario de conexiones, deje los siguientes espacios libres mínimos:

- Por encima 100 mm (3.9 in)
- No instalar componentes sensibles a la temperatura tales como contactores o fusibles a menos de los 300 mm (11.8 in) de distancia sobre la unidad
- · No es necesario dejar espacio libre debajo de la unidad
- · No es necesario dejar un espacio libre a los lados





2.9.6 MOVIDRIVE MDX62B1600/2000/2500 de tamaño 7

Al montar la unidad en el armario de conexiones, deje los siguientes espacios libres mínimos:

- Por encima 100 mm (3.9 in)
- No instalar componentes sensibles a la temperatura tales como contactores o fusibles a menos de los 300 mm (11.8 in) de distancia sobre la unidad
- · No es necesario dejar espacio libre debajo de la unidad
- · No es necesario dejar un espacio libre a los lados

Datos técnicos de las reactancias y filtros

Opción inductancias tipo ND..

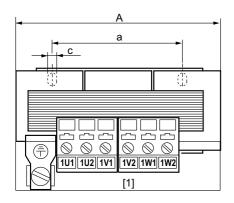
3 Datos técnicos de las reactancias y filtros

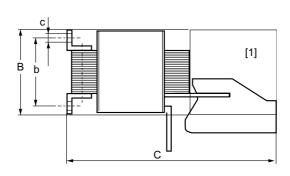
3.1 Opción inductancias tipo ND..

El uso de inductancias es opcional:

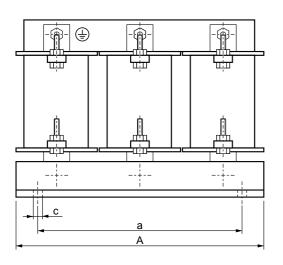
- · Para reforzar la protección contra sobretensiones
- Para filtrar la corriente de red y disminuir las distorsiones armónicas
- Para proteger en caso de distorsiones en la tensión de red
- Para limitar la corriente de carga en caso de varios convertidores con la entrada conectada en paralelo y un contactor de red común (corriente nominal de la inductancia = suma de las corrientes de los convertidores).

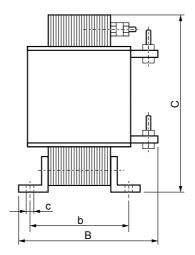
Las inductancias de red ND.. tienen una aprobación cRUus independiente del MOVIDRIVE[®].


Tipo de inductancia	ND020-013	ND030-023 ¹⁾	ND045-013	ND085-013	ND150-013	ND200- 0033	ND300-0053
Ref. de pieza	826 012 5	827 151 8	826 013 3	826 014 1	825 548 2	826 579 8	827 721 4
Tensión nominal de red U _N (conforme a EN 50160)			3 × 380 - 500	V _{CA} , 50/60 Hz			
Corriente nominal ²⁾ I _N	20 A _{CA}	30 A _{CA}	45 A _{CA}	85 A _{CA}	150 A _{CA}	200 A _{CA}	300 A _{CA}
Pérdida de potencia con I_N P_V	10 W	30 W	15 W	25 W	65 W	100 W	280 W
Inductividad L _N	0,1 mH	0,2 mH	0,1 mH	0,1 mH	0,1 mH	0,03 mH	0.05 mH
Temperatura ambiental ϑ_{U}			-25 –	+45 °C			
Índice de protección		IP00 (EN 60529)					
Conexiones	Bornas en fila 4 mm ² (AWG12)	Bornas en fila 2,5 mm ² – 10 mm ² (AWG13 – AWG8)	Bornas en fila 10 mm ² (AWG8)	Bornas en fila 35 mm ² (AWG2)		Pernos M10 Perr PE: Pernos M8 PE:	
Par de apriete	0,6 – 0,8 Nm	máx. 2,5	5 Nm	3,2 – 3,7 Nm	PE: 6 Nm		Pernos M12: 15,5 Nm PE: 10 Nm
Asignación de unidades de	e 400/500 V _{CA} (M	DX60/61B5_3)					
Funcionamiento nominal (100 %)	0005 – 0075	0110/0150	0110 – 0220 y MDR60A0150	0300 – 0450 y MDR60A0370	0550/0750	MDR60A 0750	0900 – 1320
Potencia aumentada (125 %)	0005 – 0075	0110	0110/0150	0220 - 0370	0450 – 0750	0750	
Asignación de unidades de	Asignación de unidades de 230 V _{CA} (MDX61B2_3)						
Funcionamiento nominal (100 %)	0015 – 0055	-	0075/0110	0150/0220	0300	-	-
Potencia aumentada (125 %)	0015 – 0037	-	0055/0075	0110/0150	0220/0300	-	-


- 1) Utilice ND030-023 para la conexión de circuito intermedio sin sistema de recuperación de energía de red con tipo de conexión A o B
- 2) Si se conecta más de un MOVIDRIVE[®] a una inductancia, la suma de las corrientes nominales de red de los aparatos conectados no debe sobrepasar la corriente nominal de la inductancia.

3.1.1 Dimensiones inductancia ND020.. / ND030.. / ND045.. / ND085..




1455926923

[1] Espacio para bornas de montaje Entrada: 1U1, 1V1, 1W1 Posición de montaje indiferente Salida: 1U2, 1V2, 1W2

Tipo de inductancia	Dimension	es principales	mm (pulg.)	Medidas de fi	jación mm (pulg.)	Diámetro de agujero mm (pulg.)	Masa
	Α	В	С	а	b	С	kg (lb)
ND020-013	85 (3.3)	60 (2.4)	120 (4.72)	50 (2)	31 - 42 (1.2 - 1.7)	5 - 10 (0.2 - 0.39)	0.5 (1)
ND030-023 ND045-013	125 (4.92)	95 (3.7)	170 (6.69)	84 (3.3)	55-75 (2.2 - 3)	6 (0.24)	2.5 (5.5)
ND085-013	185 (7.28)	115 (4.53)	235 (9.25)	136 (5.35)	56 - 88 (2.2 - 3.5)	7 (0.28)	8 (18)

3.1.2 Dimensiones inductancia ND150.. / ND200.. / ND300..

Tipo de inductancia	Dimension	es principales	mm (pulg.)	Medidas de fi	jación mm (pulg.)	Diámetro de agujero mm (pulg.)	Masa
	Α	В	С	а	b	С	kg (lb)
ND150-013	255 (10)	140 (5.51)	230 (9.06)	170 (6.69)	77 (3)	8 (0.31)	17 (37)
ND200-0033	250 (9.84)	160 (6.3)	230 (9.06)	180 (7.09)	98 (3.9)	8 (0.31)	15 (33)
ND300-0053	300 (11.8)	190 (7.48)	295 (11.6)	255 (10)	145 (5.71)	11 (0.43)	35 (77)

Datos técnicos de las reactancias y filtros

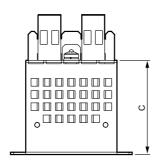
Opción reactancia de circuito intermedio tipo ZD..

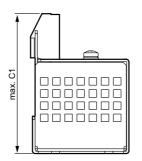
3.2 Opción reactancia de circuito intermedio tipo ZD..

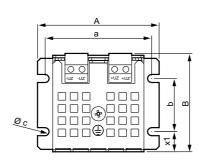
Se necesitan reactancias de circuito intermedio para conectar los sistemas de recuperación de energía de red a través de la conexión de circuito intermedio:

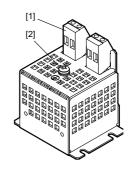
- MOVIDRIVE® MDR61B1600-503-00/L (160 kW)
- MOVIDRIVE[®] MDR61B2500-503-00/L (250 kW)

conectada al variador vectorial MOVIDRIVE®, tamaños 0 a 6 (0,55 kW - 132 kW)


Las reactancias de circuito intermedio ZD.. tienen una aprobación cRUus independiente del MOVIDRIVE[®] (en preparación).

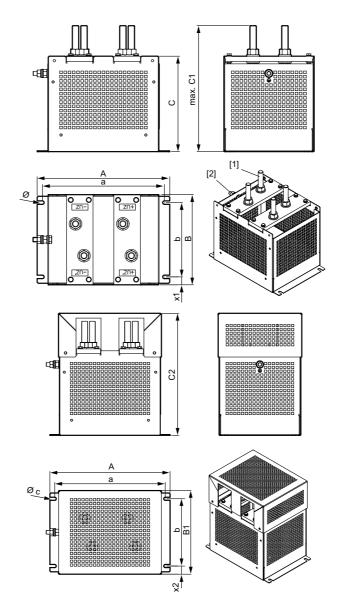

Reactancia de circuito intermedio tipo	ZD010-0200	ZD040-0070	ZD140-0020	ZD330-0006			
Ref. de pieza	17968437	17968402	17968410	17968429			
Para aparatos con Tensión nominal de red U _N (conforme a EN 50160)		3 × 380 − 500 V _{CA} , 50/60 Hz					
Corriente nominal I _N	A _{CC} 10 A	A _{CC} 40	A _{CC} 140	A _{CC} 330			
Pérdida de potencia con I _N P _V	7 W	17 W	29 W	40 W			
Temperatura ambiental ϑ _U	-10 – 40 °C; 40 – 60 °C desclasificación como en MOVIDRIVE [®] MDX60/61B						
Índice de protección		IP	10				
Conexiones	Bornas en fila 4 mm ² (AWG12) PE: Pernos M5	Perno M6 PE: Perno M6	Pernos M10 PE: Pernos M8	Pernos M12 PE: Pernos M8			
Par de apriete	0,6 0,8 Nm	3 Nm	M10: 10 Nm PE: 6 Nm	M12: 15,5 Nm PE: 6 Nm			
Asignación de unidades de	400/500 V _{CA} (MDX60/61E	35_3)					
Funcionamiento nominal (100 %)	0005 – 0040	0055 – 0150	0220 – 0550	0750 – 1320			
Potencia aumentada (125 %)	0005 – 0040	0055 – 0150	0220 – 0550	0750 – 1320			





3.2.1 Dimensiones reactancia de circuito intermedio ZD010..

- [1] Borna de conexión 4 mm²
- [2] Pernos de puesta a tierra M5


Reactancia de circuito intermedio	Dimens	siones prin	cipales mm	ı (pulg.)	Medida	s de fijación r	mm (pulg.)	Diámetro de agujero mm (pulg.)	Masa
Variante	Α	В	С	C1	а	b	x1	С	kg (lb)
ZD010-0200	80 (3.15)	64.75 (2.55)	62 (2.44)	95 (3.74)	70 (2.76)	35 (1.38)	13.25 (0.52)	5.3 (0.21)	0.56 (1.2)

Datos técnicos de las reactancias y filtros

Opción reactancia de circuito intermedio tipo ZD..

3.2.2 Dimensiones reactancias de circuito intermedio ZD040.. / ZD140.. / ZD330.. con y sin tapa

- [1] Perno de conexión M12
- [2] Pernos de puesta a tierra M8

Reactancia de circuito intermedio	Dimensiones principales mm (pulg.)							le fijación mm oulg.)	Diámetro de agujero mm (pulg.)	Masa
Variante	Α	В	B1	С	C1	C2	а	b	С	kg (lb)
ZD040-0070	130	94	98	116	145	156	120	60	5.3	2
	(5.12)	(3.70)	(3.86)	(4.57)	(5.71)	(6.14)	(4.72)	(2.36)	(0.21)	(4.4)
ZD140-0020	190	130	134	110	150	164.5	170	100	6.5	4.5
	(7.48)	(5.12)	(5.28)	(4.33)	(5.91)	(6.48)	(6.69)	(3.94)	(0.26)	(9.9)
ZD330-0006	250	170	174	180	240	254	230	140	6.5	8.8
	(9.84)	(6.69)	(6.85)	(7.09)	(9.45)	(10)	(9.06)	(5.51)	(0.26)	(19)

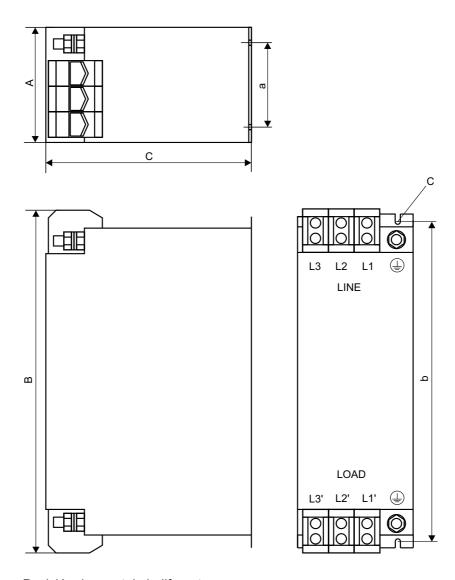
Opción filtro de red tipo NF...-...

3.3 Opción filtro de red tipo NF...-...

- Para suprimir la emisión de interferencias en la parte de la red de convertidores.
- Entre el filtro de red NF... y MOVIDRIVE $^{\circledR}$ no debe conmutarse.
- Los filtros de red NF... disponen de una aprobación cRUus independiente de MOVIDRIVE[®].

Tipo de filtro de red	NF009-503	NF014-503	NF018-503	NF035-503	NF048-503		
Ref. de pieza	827 412 6	827.116 X	827 413 4	827 128 3	827 117 8		
Tensión nominal de red (conforme a EN 50160)		3 × 380 - 500 V _{CA} , 50/60 Hz					
Corriente nominal I _N	9 A _{CA}	14 A _{CA}	18 A _{CA}	35 A _{CA}	48 A _{CA}		
Pérdida de potencia con I _N P _V	6 W	9 W	12 W	15 W	22 W		
Corriente de fuga a tierra U _N	< 25 mA	< 25 mA	< 25 mA	< 25 mA	< 40 mA		
Temperatura ambiental ϑ_{U}			-25 – +40 °C				
Índice de protección			IP20 (EN 60529)				
Conexiones L1-L3/L1'-L3' Par de apriete L1-L3/L1'-L3' Conexión PE Par de apriete PE		4 mm ² (AWG 10) 0,8 Nm Pernos M5 3,4 Nm		10 mm ² (AWG 8) 1,8 Nm Pernos M5 3,4 Nm	10 mm ² (AWG 8) 1,8 Nm Perno M6 5,5 Nm		
Asignación de unidades de 400/500	V _{CA} (MDX60/61B.	5_3)					
Funcionamiento nominal (100 %)	0005 – 0040	0055/0075	-	0110/0150	0220		
Potencia aumentada (125 %)	0005 – 0030	0040/0055	0075	0110	0150		
Asignación de unidades de 230 V _C ,	(MDX61B2_3)						
Funcionamiento nominal (100 %)	0015/0022	0037	-	0055/0075	0110		
Potencia aumentada (125 %)	0015	0022	0037	0055/0075	-		

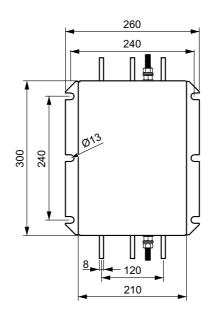
Tipo de filtro de red	NF063-503	NF085-503	NF115-503	NF150-503	NF210-503	
Ref. de pieza	827 414 2	827 415 0	827 416 9	827 417 7	827 418 5	
Tensión nominal de red (conforme a EN 50160)		3 × 3	380 - 500 V _{CA} , 50/6	0 Hz		
Corriente nominal I _N	63 A _{CA}	85 A _{CA}	115 A _{CA}	150 A _{CA}	210 A _{CA}	
Pérdida de potencia con I _N P _V	30 W	35 W	60 W	90 W	150 W	
Corriente de fuga a tierra U _N	< 30 mA	< 30 mA	< 30 mA	< 30 mA	< 40 mA	
Temperatura ambiental ϑ_{U}			-25 – +40 °C			
Índice de protección	IP20 (EN 60529)					
Conexiones L1-L3/L1'-L3'	16 mm ² (AWG 6)	35 mm ² (AWG 2)	50 mm ² (AWG1/0)	50 mm ² (AWG1/0)	95 mm ² (AWG4/0)	
Par de apriete L1-L3/L1'-L3' Conexión PE Par de apriete PE	3 Nm M6 5,5 Nm	3,7 Nm M8 12,8 Nm	`3,7 Nm´ M10 23,8 Nm	`3,7 Nm´ M10 23,8 Nm	20 Nm ² M10 23,8 Nm	
Asignación de unidades de 400/500	V _{CA} (MDX60/61B.	5_3)				
Funcionamiento nominal (100 %)	0300	0370/0450	0550	0750	0900/1100	
Potencia aumentada (125 %)	0220	0300/0370	0450	0550/0750	0900	
Asignación de unidades de 230 V _{CA} (MDX61B2_3)						
Funcionamiento nominal (100 %)	0150	0220	0300	-	-	
Potencia aumentada (125 %)	0110/0150	-	0220/0300	-	-	

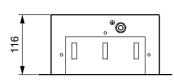

Datos técnicos de las reactancias y filtros Opción filtro de red tipo NF...-...

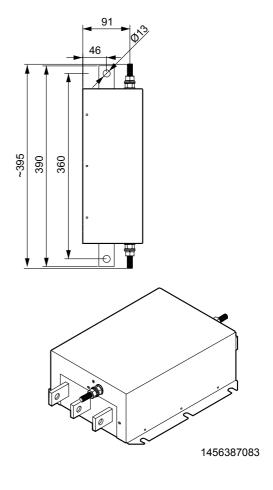
Tipo de filtro de red	NF300-503	NF600-503
Ref. de pieza	827 419 3	1 796 338 9
Tensión nominal de red (conforme a EN 50160)	3 × 380 - 500	V _{CA} , 50/60 Hz
Corriente nominal I _N	300 A _{CA}	600 A _{CA}
Pérdida de potencia con I _N P _V	180 W	44 W
Corriente de fuga a tierra U _N	< 45 mA	< 6 mA
Temperatura ambiental ϑ _U	-25 – -	+40 °C
Índice de protección	IP20 (EN 60529)	IP00 (EN 60529)
Conexiones L1-L3/L1'-L3' Par de apriete L1-L3/L1'-L3' Conexión PE Par de apriete PE	150 mm ² (AWG300-2) 30 Nm M12 36 Nm	Pretina de conexión con orificio para M12 Máx. 2 × 240 mm ² 70 Nm (620 lb in) M12 36 Nm
Asignación de unidades de 400/500	V _{CA} (MDX60/61B5_3)	
Funcionamiento nominal (100 %)	1320	2500
Potencia aumentada (125 %)	1100/1320	1600/2000/2500
Asignación de unidades de 230 V _{CA}	(MDX61B2_3)	
Funcionamiento nominal (100 %)	-	-
Potencia aumentada (125 %)	-	-

Dimensiones filtros de red NF009-503 - NF300-503 3.3.1

Posición de montaje indiferente


Tipo de filtro de	Dimensione	Dimensiones principales mm (pulg.)		Medidas de fijación mm (pulg.)		•		Diámetro de agujero mm (pulg.)	Conexión PE	Masa
red	Α	В	С	а	b	С		kg (lb)		
NF009-503	EE (2.2)	195 (7.68)			180 (7.09)			0.8 (2)		
NF014-503	55 (2.2)	225 (8.86)	80 (3.1)	20 (0.78)	210 (8.27)	5.5 (0.22)	M5	0.9 (2)		
NF018-503	50 (1.97)	255 (10)			240 (9.45)			1.1 (2.4)		
NF035-503	60 (2.26)	275 (10.8)		20 (4 40)	255 (10)			1.7 (3.7)		
NF048-503	60 (2.36)	315 (12.4)	100 (3.94)	30 (1.18)	295 (11.6)		M6	2.1 (4.6)		
NF063-503	00 (2 54)	260 (10.2)		60 (2.26)	235 (9.25)		IVIO	2.4 (5.3)		
NF085-503	90 (3.54)	320 (12.6)	140 (5.51)	60 (2.36)			M8	3.5 (7.7)		
NF115-503	100 (2.04)	220 (42)	455 (0.4)	CE (0.EC)	255 (10)	C F (0.0C)		4.8 (11)		
NF150-503	100 (3.94)	330 (13)	155 (6.1)	65 (2.56)		6.5 (0.26)	M10	5.6 (12.3)		
NF210-503	140 (5.51)	450 (17.7)	190 (7.48)	102 (4.02)	365 (14.4)			8.9 (20)		
NF300-503	170 (6.69)	540 (21.3)	230 (9.06)	125 (4.92)	435 (17.1)		M12	12.2 (26.9)		




Datos técnicos de las reactancias y filtros

Opción filtro de red tipo NF...-...

3.3.2 Dimensiones filtro de red NF600-503

Posición de montaje indiferente

Tipo de filtro de red	Conexión	Masa
ripo de ilitro de red	PE	kg (lb)
NF600-503	M12	16.8 (37)

4 Datos técnicos: Accesorios externos

4.1 Opción protección contra contacto accidental DLB11B

4.1.1 Ref. de pieza

823 111 7 (contenido de suministro: 12 unidades)

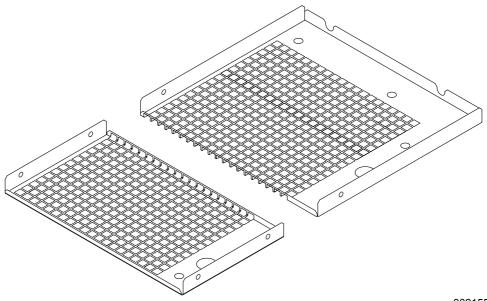
4.1.2 Descripción

1454399115

Con la protección contra contacto accidental DLB11B se puede alcanzar el índice de protección IP20 en los siguientes aparatos:

- MOVIDRIVE® MDX61B tamaño 4 (unidades de 500 $\rm V_{CA}$: MDX61B0370/0450; unidades de 230 $\rm V_{CA}$: MDX61B0220/0300)
- MOVIDRIVE® MDX61B tamaño 5 (unidades de 500 V_{CA}: MDX61B0550/0750)
- Sistema de recuperación de energía de red MOVIDRIVE[®] MDR60A tamaño 4 (MDR600750-503-00)

Datos técnicos: Accesorios externos


Opción protección contra contacto accidental DLB31B (para el sistema de recuperación de energía de red MDR61B)

4.2 Opción protección contra contacto accidental DLB31B (para el sistema de recuperación de energía de red MDR61B)

4.2.1 Ref. de pieza

18236898

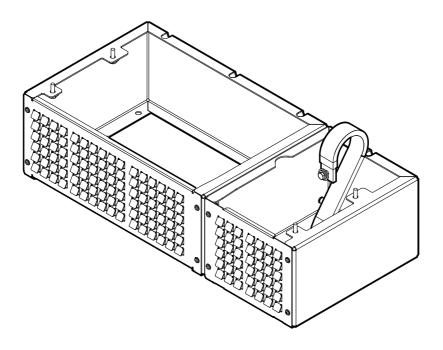
4.2.2 Descripción

3321554187

Con la protección contra contacto accidental DLB31B se puede alcanzar el índice de protección IP20 en los siguientes aparatos:

 Sistema de recuperación de energía de red MOVIDRIVE[®] MDR61B de tamaño 7 (MDR61B1600/2500)

En el contenido del suministro se incluye material de fijación para la protección contra contacto accidental. El cliente debe ajustar la protección contra contacto accidental a su propia instalación del cableado (cortando la trama de agujeros para los cables de red y de alimentación del motor).



4.3 Opción zócalo de montaje DLS31B (para el sistema de recuperación de energía de red MDR61B)

4.3.1 Ref. de pieza

1 823 627 8

4.3.2 Descripción

3321607947

El zócalo de montaje ha sido especialmente diseñado para la instalación del sistema de recuperación de energía de red MOVIDRIVE® MDR61B tamaño 7 (MDR61B1600/2500) en el armario de conexiones. El zócalo dispone de un carril de guía de cable integrado y garantiza suficiente espacio para conectar las líneas de red. El panel delantero se puede extraer para realizar trabajos de instalación. En el contenido del suministro se incluye material de fijación para montar el convertidor en el zócalo de montaje.

Datos técnicos: Accesorios externos

Opción kit de conexión DLA31B (para el sistema de recuperación de energía de red MDR61B)

4.4 Opción kit de conexión DLA31B (para el sistema de recuperación de energía de red MDR61B)

4.4.1 Ref. de pieza

1 823 611 1

4.4.2 Descripción

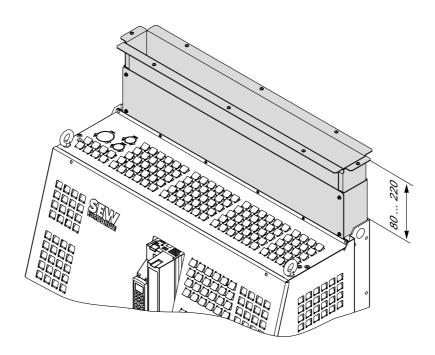
2422220427

Material de conexión para conectar cables de red y de motor con sección de hasta 240 mm² a los siguientes aparatos:

 Sistema de recuperación de energía de red MOVIDRIVE[®] MDR61B de tamaño 7 (MDR61B1600/2500)

El kit de conexión incluye el siguiente material:

- 3 × tornillos M12×30
- 3 × tuercas M12
- 3 × arandelas elásticas
- 3 × arandelas
- 1 × borna de puesta a tierra para carril de puesta a tierra (hasta un máx. de 240 mm²)



4.5 Opción canal de aire DLK31B (sistema de recuperación de energía de red MDR61B)

4.5.1 Ref. de pieza

1 823 458 5

4.5.2 Descripción

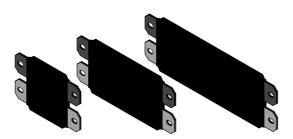
3321678475

Canal de aire para refrigerar el sistema de recuperación de energía de red MOVIDRIVE $^{\circledR}$ MDR61B tamaño 7 (MDR61B1600/2500).

El canal de aire amplía el canal de aire integrado en el aparato de tamaño 7 al techo del armario de conexiones para evacuar el calor del armario de conexiones. El canal de aire mejora la gestión de la temperatura. Para ello es necesario que se pueda evacuar el aire a través del techo del armario de conexiones. El techo del armario de conexiones debe estar equipado con una protección contra cuerpos extraños.

Datos técnicos: Accesorios externos

Opción conexión de circuito intermedio DLZ11B (para el tamaño 7)


4.6 Opción conexión de circuito intermedio DLZ11B (para el tamaño 7)

4.6.1 Ref. de pieza

La conexión de circuito intermedio DLZ11B está disponible en 3 longitudes distintas:

Variante	Ref. de pieza
DLZ11B / 100 mm	1 823 193 4
DLZ11B / 200 mm	1 823 566 2
DLZ11B / 300 mm	1 823 567 0

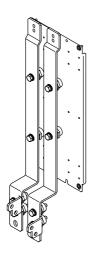
4.6.2 Descripción

2422314891

Conexión de circuito intermedio para unir lateralmente convertidores y un sistema de recuperación de energía de red de tamaño 7.

- MOVIDRIVE[®] MDX61B de tamaño 7 (MDX61B1600/2000/2500)
- Sistema de recuperación de energía de red MOVIDRIVE[®] MDR61B de tamaño 7 (MDR61B1600/2500)
- Convertidor de corriente de motor MOVIDRIVE[®] MDX62B de tamaño 7

De forma estándar, la conexión de circuito intermedio $(+U_z; -U_z)$ de tamaño 7 se puede conectar en el lateral. La conexión de circuito intermedio DLZ11B permite conectar dos unidades MOVIDRIVE® B de tamaño 7. En función de la conexión de circuito intermedio, las unidades deben instalarse manteniendo una distancia de 100 mm, 200 mm o 300 mm; el rango de tolerancia es de aprox. 4 mm. En el contenido del suministro se incluye una pletina conductora aislada y material de fijación.



4.7 Opción adaptador de circuito intermedio 2Q DLZ12B (para MDX61/62B de tamaño 7)

4.7.1 Ref. de pieza

1 822 729 5

4.7.2 Descripción

242222347

Adaptador de circuito intermedio para realizar la conexión del circuito intermedio en el lado inferior del aparato.

Para los aparatos:

- MDX61B1600-503-2-0T/L
- MDX61B2000-503-2-0T/L
- MDX61B2500-503-2-0T/L

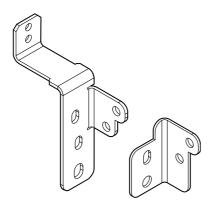
У

- MDX62B1600-503-2-0T/L
- MDX62B2000-503-2-0T/L
- MDX62B2500-503-2-0T/L

De forma estándar, la conexión de circuito intermedio $(+U_z; -U_z)$ de tamaño 7 se puede conectar en el lateral. El adaptador de circuito intermedio 2Q dispone de una conexión para $+U_z$ y $-U_z$ en el lado inferior del aparato.

El adaptador de circuito intermedio se puede utilizar para la conexión del circuito intermedio con ${\sf MOVIDRIVE}^{\circledR}$ B de tamaños 0 a 6.

Datos técnicos: Accesorios externos


Opción adaptador de circuito intermedio 4Q DLZ14B (para MDX61B/62B de tamaño 7)

4.8 Opción adaptador de circuito intermedio 4Q DLZ14B (para MDX61B/62B de tamaño 7)

4.8.1 Ref. de pieza

1 822 728 7

4.8.2 Descripción

2435823499

Adaptador de circuito intermedio para realizar la conexión del circuito intermedio en el lado inferior del aparato.

Para los aparatos:

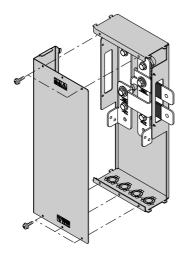
- MDX61B1600-503-4-0T/L
- MDX61B2000-503-4-0T/L
- MDX61B2500-503-4-0T/L

У

- MDX62B1600-503-4-0T/L
- MDX62B2000-503-4-0T/L
- MDX62B2500-503-4-0T/L

De forma estándar, la conexión de circuito intermedio $(+U_z; -U_z)$ de tamaño 7 se puede conectar en el lateral. El adaptador de circuito intermedio 4Q dispone de una conexión para $+U_z$ y $-U_z$ en el lado inferior del aparato. El adaptador de circuito intermedio se debe utilizar para la conexión del circuito intermedio con MOVIDRIVE[®] B de tamaños 0 a 6.

Opción conexión de circuito intermedio DLZ31B (para el tamaño 7)



4.9 Opción conexión de circuito intermedio DLZ31B (para el tamaño 7)

4.9.1 Ref. de pieza

1 823 628 6

4.9.2 Descripción

3435472907

Conexión de circuito intermedio para unir lateralmente convertidores y un sistema de recuperación de energía de red de tamaño 7 con un tamaño inferior. La conexión de circuito intermedio se puede montar en ambos lados.

De forma estándar, la conexión de circuito intermedio $(+U_z; -U_z)$ de tamaño 7 se puede conectar en el lateral. La conexión de circuito intermedio DLZ31B se puede utilizar para conectar una unidad MOVIDRIVE[®] B de tamaño 7 con un tamaño inferior.

kVA n i P Hz

Parámetros para MDR61B1600/2500

Vista general parámetros

5 Parámetros para MDR61B1600/2500

5.1 Vista general parámetros

La siguiente tabla muestra todos los parámetros con ajuste de fábrica (subrayado). Los valores numéricos se indican con rango de ajuste completo.

P00x Valores de proceso	
P002 Frecuencia	
P004 Corr. salida	
P005 Corr. activa	
P008 Tensión de circuito intermedio	
P009 Corr. salida	
P01x Indicaciones de estado	
P010 Estado del convertidor	
P011 Estado funcionam	
P012 Estado de fallo	
P014 Temperatura del radiador	
P015 Horas de funcionamiento	
P016 Horas de habilitado	
P017 Trabajo	
P03x Entradas binarias unidad básica	
P030 – P032 Entrada binaria DI00 – DI02	
P039 Entradas binarias DI00 DI07	
P05x Salidas binarias unidad básica	
P051 – P055 Salida binaria D001 – D005	
P059 Salidas binarias D001 – D005	
P07x Datos de unidad	
P070 Tipo de unidad	
P071 Corriente nominal de salida	
P072 Opción / Zócalo del encoder	
P076 Firmware unidad básica	
P08x Memor. fallo	
P080 – P084 Fallos t-0 – t-4	
P09x Diagnóstico de bus	
P094 – P096 Consigna PO1 – PO3	
P097 – P099 Valor real PI1 – PI3	
P1xx Consignas / Integradores	
P10x Preselección de consigna	
P101 Fuente de control	BORNAS
P2xx Parámetros del regulador	
P29x Recuperación de energía	
P290 Tensión mínima	
P291 Ganancia propor. del regulador de tensión	
P292 Tiempo de reajuste del regulador de tensión	
P293 Ganancia propor. del regulador de corriente	
P294 Tiempo de reajuste del regulador de corriente	
P295 Tiempo de tolerancia de Red OFF	
D00011 1 11	
P296 Uz reducido	
P296 Uz reducido P297 Energía realimentada	

Parámetros para MDR61B1600/2500

Vista general parámetros

P299 Tensión de red		
P4xx Señales de referencia		
P43x Señal de referencia de corriente		
P430 Valor de referencia de corriente	0 - <u>100</u> - 200 % I _N	
P431 Histéresis	0 - <u>5</u> - 30 % I _N	
P432 Tiempo de retardo	0 - <u>1</u> - 9 s	
P433 Señal = "1" si:	<u> < _{ref} / > _{ref}</u>	
P6xx Asignación de bornas		
P60x Entradas binarias de la unidad básica		
P600 Entrada binaria DIØ1	HABILITADO	
P601 Entrada binaria DIØ2	RESET	
P62x Salidas binarias de la unidad básica		
P620 – P623 Salida binaria DOØ1 – DOØ4		
P8xx Funciones de la unidad		
P80x Configuración		
P802 Ajustes de fábrica	NO	
P803 Bloqueo de parámetros	OFF	
P804 Reset datos estadísticos	<u>NO</u>	
P81x Comunicación serie		
P810 Dirección RS485	<u>0</u> - 99	
P811 Dirección de grupo RS485	<u>100</u> - 199	
P812 Tiempo de desbordamiento RS485	<u>0</u> - 650 s	
P83x Reacciones en caso de fallo		
P833 Respuesta TIEMPO DE DESBORDAMIENTO RS485	SÓLO VISUALIZAR	
P836 Respuesta DESBORDAMIENTO SBus 1	SÓLO VISUALIZAR	
P84x Respuesta reset		
P840 Reset manual	<u>NO</u>	
P841 Auto-Reset	<u>OFF</u>	
P842 Tiempo de reinicio	1 - <u>3</u> - 30 s	
P87x Descripción de los datos del proceso		
P870/P871/P872 Descripción de consigna PO1/PO2/PO3		
P873/P874/P875 Descripción del valor real PI1/PI2/PI3		
P876 Habilitar datos PO	ON	
P88x Comunicación serie SBus 1 / 2		
P881 Dirección SBus 1	<u>0</u> - 63	
P883 Tiempo de desbordamiento SBus 1	<u>0</u> - 650 s	
P884 Veloc. transm. en baudios del SBus 1	125/250/ <u>500</u> /1000 kbaudios	

kVA n i P Hz

Parámetros para MDR61B1600/2500

Explicación de los parámetros

5.2 Explicación de los parámetros

A continuación se describen los parámetros, divididos en 10 grupos. Los nombres de los parámetros corresponden a la representación en el árbol de parámetros. El ajuste de fábrica se destaca en cada caso mediante subrayado.

5.2.1 Símbolos

Los siguientes símbolos explican los parámetros:

Estos parámetros sólo pueden modificarse si el estado del convertidor es BLOQUEADO (= etapa final de alta resistencia).

La función de puesta en marcha modifica automáticamente este parámetro.

5.2.2 P0xx Valores de indicación

Este grupo de parámetros contiene la siguiente información:

- Valores de proceso y de estado de la unidad básica
- Valores de proceso y de estado de las opciones montadas
- · Memoria de fallos
- · Parámetros del bus de campo

P00x Valores de proceso

P002 Frecuencia Frecuencia del convertidor de corriente de red in Hz.

P004 Corriente de salida

Corriente aparente en la gama de 0 – 200 % de la corriente nominal de la unidad.

P005 Corriente

Corriente activa en la gama de 0 - 200 % I $_N$. Si hay flujo de energía en el accionamiento, el valor de indicación es positivo. Si hay flujo de energía en sentido a la red, el valor de indicación es negativo.

P008 Tensión de circuito intermedio

Se muestra la tensión medida en el circuito intermedio de tensión continua.

P009 Corriente de salida

Corriente aparente del convertidor de corriente de red, indicado en A CA.

P01x Indicaciones de estado

P010 Estado del convertidor

Estado de la etapa de salida de la unidad (BLOQUEADA, HABILITADA).

P011 Estado funcionam

Son posibles los estados de funcionamiento siguientes (display de 7 segmentos):

- 0: FUNCIONAM. 24 V (convertidor no está listo)
- 1: BLOQUEO REGULAD.
- 2: NO HABILITADO
- 3: CARGANDO CIRCUITO INTERMEDIO
- 4: HABILITADO
- 8: ESTADO DE SUMINISTRO

Parámetros para MDR61B1600/2500

Explicación de los parámetros

d: CARGA PREVIA

F: FALLO

t: ESPERANDO DATOS

U: STO → Puentes de señales X17 no instalados

P012 Estado de fallo

Número de fallo y fallo en texto legible. El número de fallo aparece en el display de siete segmentos del sistema de recuperación de la energía de red.

P014 Temperatura del radiador

Temperatura del radiador del sistema de recuperación de la energía de red en la gama de -40 - +125 °C.

Horas de funcionamiento. P015

Suma de las horas que el sistema de recuperación de la energía de red estuvo conectado a la red o a la alimentación de 24 V_{CC} externa, ciclo de memorización 1 min.

P016 Horas de habilitado

P017 Trabajo

Suma de las horas que el sistema de recuperación de la energía de red estuvo en el estado de funcionamiento HABILITADO, ciclo de memorización 1 min.

Suma de la energía activa eléctrica que el sistema de recuperación de la energía ha

consumido de la red, ciclo de memorización 1 min.

P039 Entradas binarias unidad básica

P030 - P032Entrada binaria DI00 - DI02

Se muestra el estado actual de la borna de entrada DI00 – DI02 junto con la asignación

actual de la función.

Se debe tener en cuenta que la entrada binaria DI00 siempre está asignada de forma fija al bloqueo regulador.

Para selección de menú véase P60x Entradas binarias unidad básica.

P039 Entradas

binarias DI00 - DI07 Muestra las entradas binarias estándar DI00 a DI07 en este orden.

P05x Salidas binarias unidad básica

P051 - P055 Salida binaria

Se muestra el estado actual de la salida binaria disponible en la unidad básica junto con

la asignación actual de la función.

DO01 - DO05

Para selección de menú véase P62x Salidas binarias unidad básica.

P059 Salidas binarias DO01 -

DO05

Muestra las salidas binarias DO01 – DO05 en este orden.

P07x Datos de unidad

P070 Tipo de unidad

Se muestra la denominación completa de la unidad, p. ej. MDR61B2500-503.

P071 Corriente nominal de salida Se indica el valor efectivo de la corriente nominal del convertidor de corriente de red.

P072 Opción /

Se indica el registro de los valores de medición de la tensión de red "MDR" enchufado

Zócalo del encoder en ese momento en el zócalo del encoder.

kVA n i P Hz

Parámetros para MDR61B1600/2500

Explicación de los parámetros

P076 Firmware unidad básica

Se muestra la versión del programa del firmware utilizado en la unidad básica.

P08x Memor. fallo P080 – P084 Fallo t-0 – t-4

Existen 5 memorias de fallos (t-0 – t-4). Los fallos se almacenan en orden cronológico, almacenándose siempre el fallo más reciente en la memoria de fallos t-0. Si se producen más de 5 fallos se elimina el fallo más antiguo, almacenado en t-4.

Respuestas a fallo programables: Véase la tabla P83x Reacciones en caso de fallo.

Se guarda la información siguiente sobre el momento en el que se produce el fallo y, en caso de fallo, se puede ver:

- Estado ("0" o "1") de las entradas/salidas binarias
- Estado de funcionamiento del sistema de recuperación de la energía de red
- · Estado de la unidad
- Temperatura del radiador
- · Corriente de salida
- · Corriente activa
- · Utilización de la unidad
- Tensión de circuito intermedio
- · Horas de funcionamiento
- Horas de habilitado
- Valor efectivo de la tensión de red

P09x Diagnóstico de bus

P094 – P096 Consigna PO1 – PO3 Se indica el valor transmitido actualmente a la palabra de datos de proceso en forma hexadecimal.

Consigna PO	Descripción
P094 Consigna PO1	P870 Descripción del valor de consigna PO1
P095 Consigna PO2	P871 Descripción del valor de consigna PO2
P096 Consigna PO3	P872 Descripción del valor de consigna PO3

P097 – P099 Valor real PI1 – PI3 Se indica el valor transmitido actualmente a la palabra de datos de proceso en forma hexadecimal.

Consigna PI	Descripción
P097 Valor real PI1	P873 Descripción del valor real PI1
P098 Valor real PI2	P874 Descripción del valor real Pl2
P099 Valor real PI3	P875 Descripción del valor real Pl3

5.2.3 P1xx Consignas / Rampas

P10x Preselección de consigna

Con *P100* también puede seleccionar una interfaz de comunicación como fuente de control. No obstante, las interfaces no se desactivan automáticamente con estos parámetros ya que el variador vectorial debe permanecer preparado en todo momento para recibir datos a través de todas las interfaces.

Si el variador vectorial se encuentra en el estado "t = Esperando datos", compruebe los tiempos de desbordamiento del parámetro *P812 Tiempo de desbordamiento RS485* y, si fuera necesario, desconecte el control del tiempo de desbordamiento introduciendo 0 s o 650 s.

Parámetros para MDR61B1600/2500

Explicación de los parámetros

P101 Fuente de control

" |--| Se ajusta el origen de las órdenes de control para el convertidor (BLOQUEO REGUL., HABILITADO...).

- BORNAS: El control se realiza mediante las entradas binarias.
- RS485: El control se efectúa a través de la interfaz RS485 y las entradas binarias.
- SBus: El control se efectúa a través del bus de sistema y las entradas binarias.

5.2.4 P2xx Parámetros del regulador

P29x Recuperación de energía

La tensión del circuito intermedio de la unidad de alimentación / retorno se regula mediante una regulación de tensión con regulación de corriente de nivel inferior.

P290 Tensión mínima Rango de ajuste: 620 V - 780 V

En la unidad de alimentación / retorno, el nivel de la tensión del circuito intermedio depende del nivel de la tensión de red. La tensión del circuito intermedio se incluye automáticamente con la tensión de red. La tensión mínima del circuito intermedio es de 620 V.

En caso de tensiones de red reducidas, se puede aumentar la tensión mínima.

Asignación automática (no se requiere el ajuste de los parámetros):

Tensión de red	Tensión de circuito intermedio regulada
380 V _{CA}	644 V _{CC}
400 V _{CA}	670 V _{CC}
440 V _{CA}	722 V _{CC}
460 V _{CA}	748 V _{CC}
480 V _{CA}	774 V _{CC}
500 V _{CA}	780 V _{CC}

Recomendación: no modifique el ajuste de fábrica.

P291 Ganancia propor. del regulador de tensión Rango de ajuste: 0.000 - 1.775 - 100.000 A/V

La tensión del circuito intermedio de la unidad de alimentación / retorno se regula mediante una regulación de tensión con regulación de corriente de nivel inferior.

Recomendación de ajuste en la conexión:

- sólo unidades de tamaños 0 a 6 (el número de unidades es irrelevante): 0.7
- una unidad de tamaño 7 (y, en caso necesario, tamaños inferiores adicionales):
 1.775
- dos unidades de tamaño 7 (y, en caso necesario, tamaños inferiores adicionales):
 2.9

P292 Tiempo de reajuste del regulador de tensión Rango de ajuste: 0.00 – <u>30.00</u> – 10000.00 ms Recomendación: no modifique el ajuste de fábrica.

P293 Ganancia propor. del regulador de corriente Margen de ajuste MDR61B2500: $0.000 - \underline{0.925} - 100.000 \text{ V/A}$ Margen de ajuste MDR61B1600: $0.000 - \underline{1.450} - 100.000 \text{ V/A}$

El regulador de corriente está adaptado a las inductancias integradas en el sistema de recuperación de energía.

Recomendación: no modifique el ajuste de fábrica.

kWA n i P Hz

Parámetros para MDR61B1600/2500

Explicación de los parámetros

Posiblemente se tenga que adaptar el regulador de corriente en caso de malas condiciones de la red con una alta impedancia.

NOTA

Si se graba un juego de parámetros, compruebe a continuación el parámetro y, en caso necesario, corríjalo.

P294 Tiempo de reajuste del regulador de corriente Rango de ajuste: $0.00 - \underline{7.50} - 10000.00$ ms

Recomendación: no modifique el ajuste de fábrica.

Posiblemente se tenga que adaptar el regulador de corriente en caso de malas condiciones de la red con una alta impedancia. Para ello se tiene que aumentar el tiempo de reajuste.

P295 Tiempo de tolerancia de Red OFF Rango de ajuste: <u>0.000</u> – 5.000 ms

La unidad de alimentación / retorno lleva a cabo un control de la red y del circuito intermedio. En el caso de redes defecutosas y fallos cortos de red, con el parámetro de tolerancia de Red OFF se puede ajustar un periodo de control antes de que se active la vigilancia de red. La condición es que la tensión del circuito intermedio no esté por debajo de 435 V. Un descenso por debajo de este valor provoca una desconexión por error inmediata.

P296 U₇ reducido

Rango de ajuste: Sí / No

Si se conectan unidades SEW de tamaños 0 a 6 a la unidad de alimentación / retorno con tensiones de red \geq 440 V, se tiene que ajustar el parámetro U_Z reducido a "Sí". De esta forma se evita que los elementos consumidores conectados estén sometidos a una carga de tensión demasiado alta. Si se utiliza la función, se genera además potencia reactiva de red inductiva.

Asignación automática:

Tensión de red	Tensión de circuito intermedio regulada
380 V _{CA}	644 V _{CC}
400 V _{CA}	670 V _{CC}
440 V _{CA}	700 V _{CC}
460 V _{CA}	700 V _{CC}
480 V _{CA}	700 V _{CC}
500 V _{CA}	710 V _{CC}

P297 Energía realimentada

...kWh

Suma de la energía activa eléctrica que el sistema de recuperación de la energía ha consumido de la red, ciclo de memorización 1 min.

P298 Indicación de la potencia activa

 \dots kW

Valor de la potencia actual que el convertidor de corriente toma de la red o se realimenta. Asignado con signo.

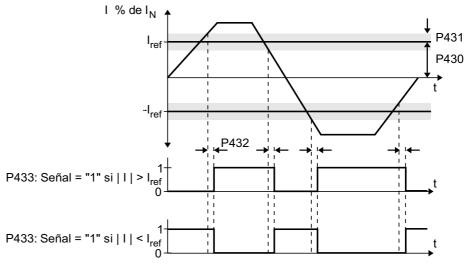
P299 Tensión de red

... V

Valor efectivo de la tensión de red

Parámetros para MDR61B1600/2500

Explicación de los parámetros


5.2.5 P4xx Señales de referencia

Los siguientes valores de referencia sirven para la adquisición y señalización de determinados estados de funcionamiento. Todas las señales del grupo de parámetros P4xx se pueden emitir a través de salidas binarias (*P62x Salidas binarias unidad básica*).

Atención: Las señales sólo son válidas cuando el variador ha informado "Listo para el funcionamiento" tras la conexión y no hay ningún aviso de error.

P43x Señal de referencia de corriente

Señal que se emite si la corriente de red es mayor o menor que el valor de referencia.

278446603

P430 Valor de referencia de corriente

Rango de ajuste: 0 – 100 – 150 % I_N

P431 Histéresis

Rango de ajuste: $0 - \underline{5} - 30 \% I_N$

P432 Tiempo de

retardo

Rango de ajuste: 0 - 1 - 9 s

P433 Señal =

 $| < |_{ref} / | > |_{ref}$

"1" si:

5.2.6 P6xx Asignación de bornas

P60x Entradas binarias de la unidad básica Las entradas binarias no son programables.

Entrada binaria DIØØ asignación fija "/BLOQUEO REGUL."

P600 Entrada binaria DIØ1 P600 Entrada binaria DIØ1 "HABILITADO"

P601 Entrada binaria DIØ2 • P601 Entrada binaria DIØ2 "RESET"

DIØ3 – DIØ7 sin función

kVA n i P Hz

Parámetros para MDR61B1600/2500

Explicación de los parámetros

P62x Salidas binarias de la unidad básica

NOTA

Las señales binarias sólo son válidas cuando la unidad ha informado "Listo para el funcionamiento" tras la conexión y no hay ningún aviso de error. Durante la fase de inicialización de MOVIDRIVE[®], las señales binarias tienen el estado "0".

Pueden programarse varias bornas con la misma función.

P620 – P623 Salida binaria DOØ1 – DOØ4

Las salidas binarias se pueden programar libremente y pueden tener asignadas las siguientes funciones:

- /FALLO
- PREPARADO
- SALID, POT, ON
- SEÑAL DE REFERENCIA DE CORRIENTE
- TAMAÑO 7 PREPARADO PARA RED

5.2.7 P8xx Funciones de la unidad

P80x Configuración

P802 Ajuste de fábrica

Rango de ajuste: NO / ESTADO DE SUMINISTRO

Con el ajuste "Estado de entrega" resetea también los datos antes señalados.

Al restablecer, en el display de 7 segmentos se visualiza un "8". Al acabar de restablecer, en el display de 7 segmentos se vuelve a visualizar el estado de funcionamiento anterior del convertidor y *P802* se establece de nuevo en "NO".

NOTA

Antes de resetear los parámetros, guarde los valores de los parámetros ajustados con SHELL o con la consola de programación. Tras el reset, se tienen que adaptar de nuevo los valores de los parámetros y las asignaciones de las bornas modificados a los requisitos.

P803 Bloqueo de parámetros

Rango de ajuste: ON / OFF

Mediante el ajuste de *P803* a "ON" es posible evitar cualquier modificación de los parámetros (con excepción de *P840 Reset manual* y el bloqueo de parámetros mismo). Es conveniente, por ejemplo, tras el ajuste optimizado del sistema de recuperación de energía de red. Para volver a posibilitar un reajuste de parámetros hay que poner de nuevo *P803* a "OFF".

El bloqueo de parámetros afecta a los parámetros siguientes:

- P803 Bloqueo de parámetros
- P840 Reset manual

P804 Reset datos estadísticos

Rango de ajuste: NO / MEMOR. FALLO / CONTADOR KWh / HORAS FUNCI

Con *P804* se pueden restablecer los datos estadísticos guardados en EEPROM de la memoria de fallos, el contador de kilovatios-hora y el contador de horas de funcionamiento.

Parámetros para MDR61B1600/2500

Explicación de los parámetros

P81x Comunicación serie

P810 Dirección RS-485 Rango de ajuste: <u>0</u> – 99

P810 se utiliza para ajustar la dirección a través de la cual puede realizarse la comunicación con el sistema de recuperación de energía de red mediante las interfaces serie. Se puede conectar entre sí hasta un máximo de 32 unidades.

NOTA

En el momento de la entrega, el sistema de recuperación de energía de red siempre tiene la dirección 0. Se recomienda no utilizar la dirección 0 para evitar que se produzcan colisiones de transmisión de datos en caso de comunicación serie con varios convertidores.

P811 Dirección grupo RS-485

Rango de ajuste: <u>100</u> – 199

Con *P811* es posible reunir varios MOVIDRIVE[®] B en un grupo para realizar la comunicación a través de la interfaz serie. De este modo, puede dirigirse a todas las unidades MOVIDRIVE[®] B con la misma dirección de grupo RS-485 a través de esta dirección mediante un telegrama Multicast. El MOVIDRIVE[®] B no confirma los datos recibidos a través de la dirección de grupo. La dirección de grupo 100 significa que el convertidor no se ha asignado a ningún grupo.

P812 Tiempo de desbordamiento RS485

Rango de ajuste: <u>0</u> – 650 s

Con *P812* se ajusta el tiempo de vigilancia para la transmisión de datos a través de la interfaz serie. MOVIDRIVE[®] B ejecuta la reacción en caso de fallo ajustada en *P833* Respuesta TIEMPO DE DESBORDAMIENTO RS485 si no hay ningún intercambio cíclico de datos de proceso a través de la interfaz serie durante el tiempo ajustado en el parámetro 812. Si se ajusta el valor 0 en *P812*, la transmisión de datos que tiene lugar a través de la interfaz serie no se vigila. La vigilancia se activa con el primer intercambio de datos cíclico.

P83x Reacciones en caso de fallo Es posible programar las siguientes reacciones:

Reacción	Descripción
SIN RESPUESTA	No se muestra ningún error ni se ejecuta ninguna reacción ante el fallo. El fallo informado se ignora por completo.
SÓLO VISUALIZAR	Se muestra el error (en display de 7 segmentos y SHELL), se establece la salida de fallo (si está programada) No obstante, la unidad no ejecuta ninguna otra respuesta a fallo. El error puede restaurarse con un reset (borna, RS485, bus de campo, auto-reset).
BLOQUEAR ETAPA DE SALIDA	Se produce una desconexión inmediata del variador con mensaje de fallo. Se bloquea el convertidor de corriente de red. Se recupera la señal de preparado y se establece la salida de interferencias si está programada. Un reinicio sólo es posible tras la ejecución de un reset de fallo. El contactor de red permanece conectado.
EXPULSAR CONTACTOR DE RED	Se produce una desconexión inmediata del variador con mensaje de fallo. La etapa de salida se bloquea. Se produce un mensaje de fallo a través de la borna, si está programado. Se abre el contactor de red.
SÓLO VISUALIZAR CON AUTO- RESET	Si se conecta de nuevo el bus de campo, se resetea la visualización.
BLOQUEAR ETAPA DE SALIDA CON AUTO-RESET	Si se conecta de nuevo el bus de campo, se habilita el convertidor de corriente de red.

P833 Respuesta DESBORDA-MIENTO RS485 Ajuste de fábrica: SÓLO VISUALIZAR

Con *P833* se programa la respuesta a fallo que genera la vigilancia del tiempo de desbordamiento RS485. El tiempo de respuesta de la vigilancia puede ajustarse con *P812 Tiempo de desbordamiento RS485*.

kWA n i P Hz

Parámetros para MDR61B1600/2500

Explicación de los parámetros

P836 Respuesta DESBORDA-MIENTO SBus 1 Ajuste de fábrica: SÓLO VISUALIZAR

Con *P836* se programa la respuesta en caso de fallo que genera la vigilancia del tiempo de desbordamiento del bus de sistema. El tiempo de respuesta de la vigilancia puede ajustarse con *P883 Tiempo de desbordamiento SBus 1*.

P84x Respuesta de reseteo

P840 Reset manual

Rango de ajuste: SÍ / NO

- SÍ: Se restablece el fallo presente en el sistema de recuperación de energía de red. En caso de fallo, con el DBG60B es posible acceder directamente a *P840* pulsando la tecla [← / Supr]. En SHELL *P840* también se encuentra en el menú principal "Parámetros". Después del reset efectuado, *P840* se encuentra automáticamente de nuevo en NO. Si no está presente ningún fallo, la activación del reset manual queda sin efecto.
- NO: Ningún reset.

P841 Auto-Reset

Rango de ajuste: ON / OFF

- ON: La función Reseteo automático se activa. En caso de fallo, esta función realiza automáticamente un reseteo de la unidad tras P842 Tiempo de reinicio. En la fase de reseteo automático son posibles 5 reseteos automáticos como máximo. Si se producen más de 5 fallos, restablecidos mediante un reseteo automático, ya no es posible realizar más reseteos automáticos hasta que no se produzca uno de los siguientes casos:
 - Reset manual a través de la borna de entrada.
 - Reset manual a través de la interfaz serie (SHELL, DBG60B, control superior)
 - Cambio al servicio de apoyo de 24 V o desconexión completa convertidor.

A continuación se pueden realizar de nuevo 5 resets automáticos.

▲ ¡ADVERTENCIA!

Peligro de aplastamiento por el arranque espontáneo del motor debido a reset automático.

Lesiones graves o fatales.

- No utilice el Auto-Reset en accionamientos cuyo arranque automático pudiera poner en peligro a personas u otros equipos.
- · Efectúe un reset manual.
- · OFF: sin Auto-Reset

P842 Tpo. reset autom.

Rango de ajuste: 1 - 3 - 30 s

Con *P842* se ajusta el tiempo de espera que debe transcurrir desde que se produce un fallo hasta que se ejecuta un reseteo automático.

P87x Descripción de los datos del proceso

P870 / P871 / P872 Descripción de consigna PO1 / PO2 / PO3 Con P870 / P871 / P872 se define el contenido de las palabras de datos de salida de proceso PO1 / PO2 / PO3. Es necesario para que el MOVIDRIVE[®] B pueda asignar las consignas correspondientes.

Descripción de consigna	Ajustes de fábrica
P870 Descripción del valor de consigna PO1	PALABRA DE CONTROL 1
P871 Descripción del valor de consigna PO2	SIN FUNCIÓN
P872 Descripción del valor de consigna PO3	SIN FUNCIÓN

Parámetros para MDR61B1600/2500

Explicación de los parámetros

P873 / P874 / P875 Descripción del valor real PI1 / PI2 / PI3 Con P873 / P874 / P875 se define el contenido de las palabras de datos de entrada del proceso PI1 / PI2 / PI3. Es necesario para que el MOVIDRIVE[®] B pueda asignar los valores reales correspondientes.

Descripción del valor real	Ajustes de fábrica
P873 Descripción del valor real PI1	PALABRA DE ESTADO 1
P874 Descripción del valor real Pl2	CORRIENTE SALIDA (CORRIENTE DE ALIMENTACIÓN DE LA RECUPERACIÓN DE ENERGÍA)
P875 Descripción del valor real Pl3	SIN FUNCIÓN

Están disponibles las siguientes asignaciones de las PI's:

Asignación	Descripción		
SIN FUNCIÓN	El contenido de la palabra de datos de entrada de proceso es 0000 _{hex} .		
CORR. SALIDA	Corriente de salida momentánea del sistema en % de I _N		
CORR. ACTIVA	Corriente activa momentánea del sistema en % de I _N • Signo positivo = corriente motor • Signo negativo = corriente generadora		
PALABRA ESTADO 1	Información de estado del convertidor.		

Encontrará más explicaciones en el manual "Perfil de la unidad de bus de campo con directorio de parámetros".

P876 Habilitar datos PO

Rango de ajuste: ON / OFF

- ON: Los últimos datos de salida de proceso emitidos por el control de bus de campo se hacen efectivos.
- OFF: Los últimos datos de salida de proceso válidos permanecen efectivos.

NOTA

Si se modifica la asignación de los datos de proceso, *P876* se ajusta automáticamente a "OFF".

P88x Comunicación serie SBus 1 / 2

P881 Dirección SBus 1

Rango de ajuste: <u>0</u> – 63

Con *P881* se ajusta la dirección de bus de sistema del MOVIDRIVE[®] B. A través de la dirección ajustada aquí, MOVIDRIVE[®] B se puede comunicar con otros MOVIDRIVE[®] B por medio del bus de sistema (SC11).

P883 Tiempo de desbordamiento SBus 1

Rango de ajuste: <u>0</u> – 650 s

Mediante *P883* se ajusta el tiempo de vigilancia para la transmisión de datos a través del bus de sistema. Si durante el tiempo ajustado en *P883* no tiene lugar ningún tráfico de datos a través del bus de sistema, el MOVIDRIVE[®] ejecuta la reacción en caso de fallo ajustada en *P836 Respuesta DESBORDAMIENTO SBus 1*. Si en *P883* se ajusta el valor 0, no habrá vigilancia sobre la transmisión de datos a través del bus de sistema.

P884 Veloc. transm. en baudios del SBus 1 Rango de ajuste: 125/250/500/1000 kbaudios

Mediante P884 se ajusta la velocidad de transmisión del bus de sistema.

Planificación

Conexión de circuito intermedio sin sistema de recuperación de energía de red

6 Planificación

6.1 Conexión de circuito intermedio sin sistema de recuperación de energía de red

En el caso de no disponer del sistema de recuperación de energía de red MOVIDRIVE® MDR60A/61B es posible conectar entre sí como máximo 2 variadores vectoriales MOVIDRIVE® a través del circuito intermedio.

La conexión de circuito intermedio sin sistema de recuperación de energía de red MOVIDRIVE[®] MDR60A/61B podrá realizarse con los siguientes tipos de conexión:

- Tipo de conexión A: Los dos convertidores se conectan a la red de alimentación.
- Tipo de conexión B: Sólo un convertidor se conecta a la red de alimentación.

6.1.1 Convertidor con tipo de conexión A

En el tipo de conexión A (\rightarrow pág. 118) se conectan los dos convertidores a la red de alimentación a través de un contactor de red y de un fusible común de red.

En el tipo de conexión A están permitidas las siguientes combinaciones de aparatos:

1. MOVIDRIVE®	2. MOVIDRIVE® opcional:			
0005-5A3-4	0005-5A3-4	-	-	-
0008-5A3-4	0005-5A3-4	0008-5A3-4	-	-
0011-5A3-4	0005-5A3-4	0008-5A3-4	0011-5A3-4	-
0014-5A3-4	0005-5A3-4	0008-5A3-4	0011-5A3-4	0014-5A3-4
0055-5A3-4	0055-5A3-4	-	-	-
0075-5A3-4	0055-5A3-4	0075-5A3-4	-	-
0110-5A3-4	0055-5A3-4	0075-5A3-4	0110-5A3-4	-
0150-503-4	0075-5A3-4	0110-5A3-4	0150-503-4	-
0220-503-4	0110-5A3-4	0150-503-4	0220-503-4	-
0300-503-4	0150-503-4	0220-503-4	0300-503-4	-
0370-503-4	0220-503-4	0300-503-4	0370-503-4	-
0450-503-4	0220-503-4	0300-503-4	0370-503-4	0450-503-4
0550-503-4	0300-503-4	0370-503-4	0450-503-4	0550-503-4
0750-503-4	0370-503-4	0450-503-4	0550-503-4	0750-503-4
0900-503-4	0450-503-4	0550-503-4	0750-503-4	0900-503-4
1100-503-4	0550-503-4	-	0900-503-4	1100-503-4
1320-503-4	-	0900-503-4	1100-503-4	1320-503-4
1600-503-X	-	-	-	1600-503-X
2000-503-X	-	-	1600-503-X	2000-503-X
2500-503-X	-	1600-503-X	2000-503-X	2500-503-X

NOTA

Con MOVIDRIVE[®] tamaño 1 (0015-5A3-4 - 0040-5A3-4) no está permitida la unión de circuito intermedio en tipo de conexión A.

Indicaciones de planificación

Obsérvense las siguientes indicaciones de planificación:

 Los dos variadores vectoriales MOVIDRIVE[®] deben estar equipados con la inductancia de red ND... adecuada. La siguiente tabla muestra la relación de convertidores e inductancias:

Tamaño	MOVIDRIVE [®]	Tipo de inductancia	Ref. de pieza
0	0005-5A3-4 - 0014-5A3-4	ND020-013	826 012 5
2	0055-5A3-4 - 0110-5A3-4	ND030-023	827 151 8
3	0150-503-4	ND045-013	826 013 3
3	0220-503-4 / 0300-503-4	ND085-013	826 014 1
4	0370-503-4	ND085-013	826 014 1
4	0450-503-4	ND150-013	825 548 2
5	0550-503-4 / 0750-503-4	ND150-013	825 548 2
6	0900-503-4 — 1320-503-4	ND300-0053	827 721 4
7	1600-503-x – 2500-503-x	Inductancia integrada	

- En el caso de que los dos convertidores no estuvieran protegidos por un fusible común sino por fusibles separados, estos dos fusibles deberán desconectar todos los polos y disparar conjuntamente. En caso contrario uno de los dos convertidores podría resultar dañado.
- El MOVIDRIVE[®] mayor debe estar equipado con una resistencia de frenado suficientemente dimensionada. Para seleccionar la resistencia de frenado correcta obsérvense las indicaciones del Manual de sistema MOVIDRIVE[®] MDX60B/61B.
- El circuito intermedio conduce una tensión continua muy alta (hasta 900 V). Para realizar la conexión de circuito intermedio emplee un cable adecuado a la magnitud de esta tensión continua con conductores retorcidos. Se recomienda utilizar los accesorios recomendados por SEW-EURODRIVE para la conexión de circuito intermedio. Consulte el capítulo "Conexión de circuito intermedio" (→ pág. 76).
- La longitud de la conexión de circuito intermedio sólo puede ser de máx. 5 m.
 De acuerdo a VDE 0100 parte 430, en el caso de una reducción de sección en una
 longitud de cable de hasta 3 m es posible renunciar a la utilización de fusibles si se
 ha reducido al mínimo el peligro de cortocircuito y la línea no se encuentra cerca de
 substancias inflamables.
- Obsérvense las prescripciones específicas al país y de la instalación para la posible protección del circuito intermedio o de las líneas de alimentación del motor.

Planificación

Conexión de circuito intermedio sin sistema de recuperación de energía de red

6.1.2 Convertidor con tipo de conexión B

En el tipo de conexión B (\rightarrow pág. 119) solamente se conecta a la red de alimentación el convertidor mayor.

En el tipo de conexión B están permitidas las siguientes combinaciones de aparatos:

1. MOVIDRIVE®	2. MOVIDRIVE® opcional:
0005-5A3-4	0005-5A3-4
0008-5A3-4	0005-5A3-4 – 0008-5A3-4
0011-5A3-4	0005-5A3-4 – 0011-5A3-4
0014-5A3-4	0005-5A3-4 – 0014-5A3-4
0055-5A3-4	0005-5A3-4 - 0040-5A3-4
0075-5A3-4	0005-5A3-4 – 0040-5A3-4
0110-5A3-4	0005-5A3-4 – 0055-5A3-4
0150-503-4	0005-5A3-4 – 0075-5A3-4
0220-503-4	0005-5A3-4 - 0110-5A3-4
0300-503-4	0005-5A3-4 - 0150-503-4
0370-503-4	0005-5A3-4 - 0150-503-4
0450-503-4	0005-5A3-4 – 0220-503-4
0550-503-4	0005-5A3-4 - 0300-503-4
0750-503-4	0005-5A3-4 - 0370-503-4
0900-503-4	0005-5A3-4 – 0450-503-4
1100-503-4	0005-5A3-4 – 0550-503-4
1320-503-4	0005-5A3-4 - 0220-503-4
1600-503-x	0005-5A3-4 – 1320-530-4 o MDX62B1600-503-x
2000-503-x	0005-5A3-4 – 1320-530-4 o MDX62B1600-503-x
2500-503-x	0005-5A3-4 – 0900-503-x

Indicaciones de planificación

Obsérvense las siguientes indicaciones de planificación:

 El variador vectorial MOVIDRIVE[®] con alimentación de red debe estar equipado con una inductancia de red ND... adecuada. El MOVIDRIVE[®] tamaño 7 lleva la inductancia integrada en el aparato. La siguiente tabla muestra la relación de convertidores e inductancias:

Tamaño	MOVIDRIVE [®]	Tipo de inductancia	Ref. de pieza
0	0005-5A3-4 - 0014-5A3-4	ND020-013	826 012 5
2	0055-5A3-4 – 0110-5A3-4	ND030-023	827 151 8
3	0150-503-4	ND045-013	826 013 3
3	0220-503-4 / 0300-503-4	ND085-013	826 014 1
4	0370-503-4	ND085-013	826 014 1
4	0450-503-4	ND150-013	825 548 2
5	0550-503-4 / 0750-503-4	ND150-013	825 548 2
6	0900-503-4 – 1320-503-4	ND300-0053	827 721 4
7	1600-503-x – 2500-503-x	Inductancia integrada	

- El MOVIDRIVE[®] mayor debe estar equipado con una resistencia de frenado suficientemente dimensionada. Para seleccionar la resistencia de frenado correcta obsérvense las indicaciones del Manual de sistema MOVIDRIVE[®] MDX60B/61B en el capítulo "Planificación".
- El circuito intermedio conduce una tensión continua muy alta (hasta 900 V). Para realizar la conexión de circuito intermedio emplee un cable adecuado a la magnitud de esta tensión continua con conductores retorcidos. Recomendamos utilizar los cables prefabricados de SEW-EURODRIVE para la conexión de circuito intermedio. Consulte el capítulo "Conexión de circuito intermedio" (→ pág. 76).
- La longitud de la conexión de circuito intermedio sólo puede ser de máx. 5 m. De acuerdo a VDE 0100 parte 430, en el caso de una reducción de sección en una longitud de cable de hasta 3 m es posible renunciar a la utilización de fusibles si se ha reducido al mínimo el peligro de cortocircuito y la línea no se encuentra cerca de substancias inflamables.
- Obsérvense las prescripciones específicas al país y de la instalación para la posible protección del circuito intermedio o de las líneas de alimentación del motor.
- La suma de las corrientes máximas debe ser menor o igual a la corriente máxima (= 150 % I_N) del primer MOVIDRIVE[®]. (Excepción: MOVIDRIVE[®] MDX61B1600/ 2000/2500 tamaño 7. Consulte la tabla)
- La suma de las corrientes constantes de salida debe ser menor o igual a la corriente constante de salida (VFC: 125 % I_N; CFC y SERVO: 100 % I_N) del primer MOVIDRIVE[®].

Planificación

Conexión de circuito intermedio con sistema de recuperación de energía de red

6.2 Conexión de circuito intermedio con sistema de recuperación de energía de red

Es posible unir entre sí más de 2 variadores vectoriales MOVIDRIVE[®] a través del circuito intermedio. El número permitido de convertidores depende de la suma de las potencias de salida de los convertidores y de un sistema de valoración de puntos.

6.2.1 Sistema de recuperación de energía de red como alimentación/recuperación de energía central Obsérvense las siguientes indicaciones de planificación:

- La conexión de circuito intermedio con sistema de recuperación de energía de red MOVIDRIVE[®] MDR60A/61B sólo es posible con MOVIDRIVE[®] MDX60B/61B con una tensión de alimentación de 400/500 V_{CA} (...-5_3). No es posible utilizar los MOVIDRIVE[®] MDX60B/61B con una tensión de conexión de 230 V_{CA}.
- Únicamente el sistema de recuperación de energía de red podrá conectarse a la red de alimentación. Los convertidores conectados a través del circuito intermedio no pueden estar conectados directamente a la tensión de red.
- Para permitir la parada de la instalación también en caso de fallo en la red, SEW-EURODRIVE recomienda equipar el convertidor de mayor potencia con una resistencia de frenado. Para seleccionar la resistencia de frenado correcta obsérvense las indicaciones de planificación en el capítulo "Selección de la resistencia de frenado BW.../BW...-T/BW...-P" (→ pág. 79).
- Conecte en estrella los convertidores al sistema de recuperación de energía de red.
 Emplee un subdistribuidor de carriles si las bornas del circuito intermedio del sistema de recuperación de energía de red no fueran suficientes.
- El circuito intermedio conduce una tensión continua muy alta (hasta 900 V). Utilice
 2 cables trenzados adyacentes o un cable de potencia apantallado de
 2 conductores. Sección de cable según la corriente de disparo I_F de F16. La tensión
 nominal del cable debe ascender como mínimo a U₀/U = 300 V / 500 V (conforme a
 DIN VDE 0298). Recomendamos utilizar los cables prefabricados de SEWEURODRIVE para la conexión de circuito intermedio. Consulte el capítulo "Conexión
 de circuito intermedio" (→ pág. 75).
- La longitud de la conexión de circuito intermedio sólo puede ser de máx. 5 m. Preste atención a mantener lo más corta posible la longitud de la conexión de circuito intermedio.
- Obsérvense las prescripciones específicas al país y de la instalación para la posible protección del circuito intermedio o de las líneas de alimentación del motor.
- Es posible unir entre sí no más de 6 variadores vectoriales MOVIDRIVE[®] de tamaños 3 a 6 a través del circuito intermedio.
- La potencia de salida momentánea de todos los convertidores conectados no deberá exceder el 150 % de la potencia nominal del sistema de recuperación de energía de red.
- La potencia nominal de todos los convertidores conectados no deberá exceder el 200 % de la potencia nominal del sistema de recuperación de energía de red.
- La potencia constante de todos los convertidores conectados no deberá exceder el 125 % de la potencia nominal del sistema de recuperación de energía de red.
- Si se conecta el sistema de recuperación de energía de red MOVIDRIVE[®] MDR61B1600/2500 con variadores vectoriales SEW de tamaño 0 6 (MOVIDRIVE[®] MDX0005 1320), es necesario emplear reactancias de circuito intermedio.

- En las instalaciones equipadas con convertidores o sistemas de recuperación de energía de red sólo pueden emplearse compensaciones inductivas.
- No se permite el uso de redes de isla (funcionamiento en generadores de corriente de emergencia) en combinación con sistemas de recuperación de energía de red.

Un sistema de recuperación de energía de red MDR60A puede funcionar cuando la recuperación de energía se bloquea a través de una entrada binaria y la energía generadora se evacúa a través de resistencias de frenado (funcionamiento similar al de un convertidor de frecuencia).

NOTA

Si el sistema de recuperación de energía de red MOVIDRIVE $^{\textcircled{l}}$ MDR61B funciona con variadores vectoriales SEW de tamaño 0 – 6 (MOVIDRIVE $^{\textcircled{l}}$ MDX60B/61B), queda descartado el uso del modo de funcionamiento SERVO.

¡ATENCIÓN!

¡Las sobretensiones pueden ocasionar la destrucción del regulador del accionamiento conectado y/o del sistema de recuperación de energía de red y del resto de cargas!

Aparte del sistema de recuperación de energía de red, a continuación del contactor de red no está permitido conectar ningún otro elemento consumidor.

 Según un sistema de puntos sólo podrán conectarse al sistema de recuperación de energía de red un número determinado de puntos.

La siguiente tabla muestra el número máximo de puntos por sistema de generación de energía de red:

Sistema de recuperación de energía de red MOVIDRIVE [®] MDR60A/61B	Tamaño	Núm. máximo de puntos
0150-503	Tamaño 2	máx. 6 puntos
0370-503	Tamaño 3	máx. 12 puntos
0750-503	Tamaño 4	máx. 45 puntos
1320-503	Tamaño 6	máx. 54 puntos
1600-503	Tamaño 7	máx. 108 puntos
2500-503	Tamaño 7	máx. 150 puntos

En función del tamaño, a los variadores vectoriales $\text{MOVIDRIVE}^{\circledR}$ se les asigna un determinado número de puntos.

La siguiente tabla muestra los números de puntos asignados por variador vectorial:

Variador vectorial MOVIDRIVE [®] MDX60/61B	Tamaño	Punto(s)
0005-5A3 - 0014-5A3 0015-5A3 - 0040-5A3 0055-5A3 - 0110-5A3 0150-503 - 0300-503 0370-503 - 0450-503 0550-503 - 0750-503	Tamaño 0 Tamaño 1 Tamaño 2, 2S Tamaño 3 Tamaño 4 Tamaño 5	1 punto 1 punto 2 puntos 4 puntos 8 puntos 15 puntos
0900-503 - 1320-503 1600-503 2000-503 - 2500-503	Tamaño 6 Tamaño 7 Tamaño 7	27 puntos 54 puntos 75 puntos

Planificación

Conexión de circuito intermedio con sistema de recuperación de energía de red

Ejemplo de cálculo de los puntos de valoración

A un sistema de recuperación de energía de red MOVIDRIVE® MDR60A0370 deben conectarse los siguientes variadores vectoriales MOVIDRIVE®:

 1 × MOVIDRIVE[®] MDX61B0075 (tamaños 2, 2S) 	6 × 1 = 6 puntos 1 × 2 = 2 puntos 1 × 4 = 4 puntos
Suma:	12 puntos
máx. admisible	12 puntos

El número máximo permitido de puntos de valoración no se sobrepasa por lo que la combinación es admisible.

La potencia nominal del sistema de recuperación de energía de red MOVIDRIVE® MDR60A0370 es de P_N = 37 kW. La suma de las potencias de salida momentáneas de los convertidores conectados no debe exceder el 150 % \times P_N = 55,5 kW.

6.2.2 Sistema de recuperación de energía de red como módulo de freno

El sistema de recuperación de energía de red MOVIDRIVE® MDR60A0150-503-00 (referencia de pieza 18252710), además de como alimentación y recuperación de energía central (→ pág. 62), también puede funcionar como módulo de freno en la conexión de circuito intermedio.

Al utilizar el sistema de recuperación de energía de red como módulo de freno, el suministro de energía queda garantizado a través del rectificador de entrada del variador vectorial conectado al circuito intermedio. La energía generadora de los procesos de descenso o frenado se inyecta de nuevo en la red de alimentación a través del sistema de recuperación de energía de red. El sistema de recuperación de energía de red MDR60A0150-503-00, al emplearlo como módulo de freno, desempeña por tanto una función de recuperación de energía, el aparato no se encarga de suministrarla.

Al sistema de recuperación de energía de red MOVIDRIVE® MDR60A0150-503-00, al emplearlo como módulo de freno, se pueden conectar entre sí como máximo 2 variadores vectoriales $MOVIDRIVE^{\circledR}$ a través del circuito intermedio.

Potencia continua de frenado / Potencia máxima de frenado

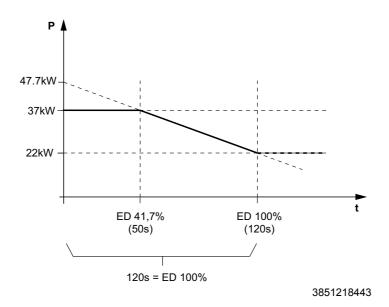
Independientemente de la tensión del circuito intermedio, el sistema de recuperación de energía de red MOVIDRIVE® MDR60A0150-503-00, al emplearlo como módulo de freno, proporciona la siguiente potencia máxima de frenado.

Se requiere necesariamente una alimentación de red intacta de 3 × 380-500 V_{CA} para recuperar energía a la red de alimentación.

En caso de fallo o avería en la red, los sistemas de recuperación de energía de red no pueden funcionar y, por tanto, tampoco pueden recuperar energía:

Sistema de recuperación de energía de red MOVIDRIVE [®] MDR60A0150: Función como módulo de freno			
Duración de conexión (ED ¹⁾)	Potencia de frenado (PB_máx)		
100 % ED (potencia continua / Potencia S1)	22 kW		
75 % ED	28 kW		
60 % ED	32 kW		
50 % ED	35 kW		
40 % ED	37 kW		
25 % ED	37 kW		
12 % ED	37 kW		
6 % ED	37 kW		
1 % ED	37 kW		

¹⁾ ED = Tiempo para la puesta en marcha del módulo de freno relativo a la duración de un ciclo $T_D \le 120 \text{ s}$



La relación entre la duración de conexión porcentual (ED) y el tiempo de conexión (t_{ON}) dentro de la duración de un ciclo (TD) de 120 s es la siguiente:

$$ED = \frac{ton \times 100\%}{120 s}$$

La siguiente potencia máxima de frenado está disponible para los rangos de la duración de conexión.

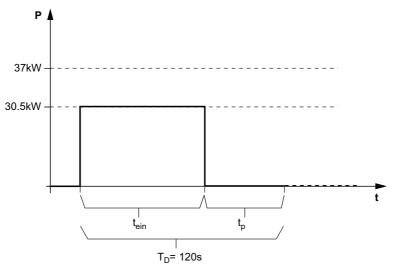
Rango de la duración de conexión (ED)	Potencia máxima de frenado (P _{B_máx})
< 40 %	$P_{B_{\rm max}} = 37kW$
40 % a < 100 %	$P_{B_{\text{máx}}} = 47,7kW - ED \frac{15kW}{58,3\%}$
100 %	$P_{B_{-}\text{máx}} = 22kW$

NOTA

No se debe exceder la potencia máxima de frenado de 37 kW. En caso de sobrecarga, aunque sea por un breve periodo de tiempo, se corre el riesgo de que se produzcan defectos en el sistema de recuperación de energía de red.

Es necesario prevenir la sobrecarga del sistema de recuperación de energía de red mediante el ajuste de las rampas de parada de emergencia de los variadores vectoriales $\mathsf{MOVIDRIVE}^{\circledR}$ conectados. Si se conectan 2 convertidores debe planificarse un proceso de frenado simultáneo.

Conexión de circuito intermedio con sistema de recuperación de energía de red


Ejemplo:

• t_{ON}= 80 s

$$ED = \frac{t_{on} \times 100\%}{120 \, s} = \frac{80 \, s \times 100\%}{120 \, s} = 66,7\%$$

$$P_{\text{B}_{\text{max}}} = 47.7kW - ED\frac{15kW}{58,3\%} = 47.7kW - 66.7\%\frac{15kW}{58,3\%} = 30.5kW$$

El siguiente gráfico muestra el ejemplo de cálculo:

3820530955

 $t_{on} = 80 \text{ s tiempo de frenado}$ $t_{p} = 40 \text{ s tiempo de pausa}$

 $T_D = 120 \text{ s duración de ciclo}$

Indicaciones de planificación

Obsérvense las siguientes indicaciones de planificación:

- La conexión de circuito intermedio con sistemas de recuperación de energía de red MOVIDRIVE[®] MDR60A/61B sólo es posible con variadores vectoriales MOVIDRIVE[®] MDX60B/61B con una tensión de alimentación de 400/500 V_{CA} (...-5_3). No es posible utilizar los MOVIDRIVE[®] MDX60B/61B con una tensión de conexión de 230 V_{CA}.
- El sistema de recuperación de energía de red MOVIDRIVE[®] MDR60A0150-503-00, en su función como módulo de freno, y los variadores vectoriales acoplados al circuito intermedio deben conectarse de la siguiente forma a la red de alimentación a través de inductancias.

Sistema de recuperación de energía de red empleado como módulo de freno en conexión de circuito intermedio con:

- un variador vectorial: una inductancia común (inductancia de suma)
- dos variadores vectoriales: 3 inductancias independientes para cada variador vectorial y sistema de recuperación de energía de red

Consulte el capítulo Opción inductancias tipo ND.. (→ pág. 28).

La siguiente tabla muestra la asignación entre variadores vectoriales MOVIDRIVE® e inductancias ND..:

Tamaño	MOVIDRIVE® MDX61B	Tipo de inductancia	Ref. de pieza
0	0005-5A3-4 - 0014-5A3-4	ND020-013	826 012 5
1	0015-5A3-4 - 0040-5A3-4	ND020-013	826 012 5
	0055-5A3-4 - 0075-5A3-4	ND020-013	826 012 5
2	0110-5A3-4	ND030-023	827 151 8
	0110-5A3-4	ND045-013	826 013 3
	0150-503-4	ND030-023	827 151 8
3	0190-503-4	ND045-013	826 013 3
3	0220-503-4	ND045-013	826 013 3
	0300-503-4	ND085-013	826 014 1

 Para garantizar la parada de la instalación también en caso de fallo en la red, SEW-EURODRIVE recomienda equipar el convertidor de mayor potencia con una resistencia de frenado.

Para seleccionar la resistencia de frenado correcta obsérvense las indicaciones de planificación en el capítulo "Selección de la resistencia de frenado BW.../BW...-T" (→ pág. 79).

- Si se utiliza el sistema de recuperación de energía de red MOVIDRIVE[®] MDR60A0150-503-00 como módulo de freno, los variadores vectoriales deben conectarse únicamente a las bornas +D/-D. Las bornas +U_z/-U_z no deben estar asignadas.
- El circuito intermedio conduce una tensión continua muy alta (hasta 900 V). Utilice
 2 cables trenzados adyacentes o un cable de potencia apantallado de
 2 conductores. La tensión nominal del cable debe ascender como mínimo a U₀/U =
 300 V / 500 V (conforme a DIN VDE 0298). Recomendamos utilizar los cables
 prefabricados de SEW-EURODRIVE para la conexión de circuito intermedio.
 Consulte el capítulo "Juegos de cables y accesorios para la conexión del circuito
 intermedio" (→ pág. 76).
- La longitud de la conexión de circuito intermedio sólo puede ser de máx. 5 m. De acuerdo a VDE 0100 parte 430, en el caso de una reducción de sección en una longitud de cable de hasta 3 m es posible renunciar a la utilización de fusibles si se ha reducido al mínimo el peligro de cortocircuito y la línea no se encuentra cerca de substancias inflamables.

Planificación

Conexión de circuito intermedio con sistema de recuperación de energía de red

- Obsérvense las prescripciones específicas al país y de la instalación para la posible protección del circuito intermedio o de las líneas de alimentación del motor.
- La potencia máxima momentánea de frenado de todos los convertidores conectados no deberá exceder de 37 kW.
- La potencia continua de frenado de todos los convertidores conectados no deberá exceder de 22 kW.

Combinación con variadores vectoriales

Si se conectan variadores vectoriales MOVIDRIVE® MDX60B/61B a un sistema de recuperación de energía de red MOVIDRIVE® MDR60A empleado como módulo de freno, el sistema de recuperación de energía de red y los variadores vectoriales deberán conectarse a la red de alimentación a través de un contactor de red y de un fusible común de red.

Son admisibles las siguientes combinaciones de sistema de recuperación de energía de red MOVIDRIVE® MDR60A con un variador vectorial MOVIDRIVE® MDX61B:

MOVIDRIVE [®] MDR60A (Función como módulo de freno)	1 x variador vectorial MOVIDRIVE [®] MDX61B
0150-503-00	0150-503-4 — 0300-503-4

Son admisibles las siguientes combinaciones de sistema de recuperación de energía de red MOVIDRIVE $^{\circledR}$ MDR60A con dos variadores vectoriales MOVIDRIVE $^{\circledR}$ MDX61B (incl. funcionamiento de 125 %):

Sistema de recuperación	2 x variadores vectoriales MOVIDRIVE [®] MDX61				
de energía de red MOVIDRIVE [®] MDR60A (Función como módulo de freno)	1. Unidad + Reactancia de red		2. unidad Reactand		
	0005-5A3-4 ND020-013	0005-5A3-4 ND020-013	-	-	-
0150-503-00 ND020-013	0008-5A3-4 ND020-013	0005-5A3-4 ND020-013	0008-5A3-4 ND020-013	-	-
ND020-013	0011-5A3-4 ND020-013	0005-5A3-4 ND020-013	0008-5A3-4 ND020-013	0011-5A3-4 ND020-013	
	0014-5A3-4 ND020-013	0005-5A3-4 ND020-013	0008-5A3-4 ND020-013	0011-5A3-4 ND020-013	0014-5A3-4 ND020-013
	0055-5A3-4 ND020-013	0055-5A3-4 ND020-013	-	-	-
0150-503-00	0075-5A3-4 ND020-013	0055-5A3-4 ND020-013	0075-5A3-4 ND020-013	-	-
ND045-013	0110-5A3-4 ND045-013	0055-5A3-4 ND020-013	0075-5A3-4 ND020-013	0110-5A3-4 ND045-013	-
	0150-503-4 ND045-013	0075-5A3-4 ND020-013	0110-5A3-4 ND045-013	0150-503-4 ND045-013	-

i

NOTA

Con MOVIDRIVE[®] MDX61B tamaño 1 (0015-5A3-4 – 0040-5A3-4), no es admisible la conexión de circuito intermedio con el sistema de recuperación de energía de red MDR60A0150-503-00 con tipo de conexión A en la función como módulo de freno.

Selección Filtro de entrada NF..

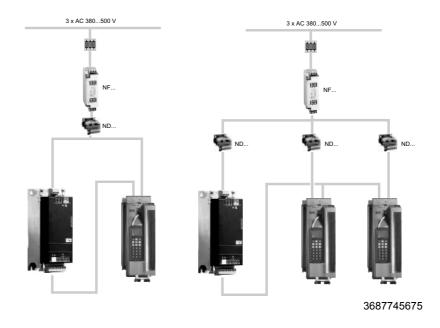
Si se utiliza el sistema de recuperación de energía de red MOVIDRIVE[®] MDR60A0150-503-00 como módulo de frenado, se puede planificar un filtro de red de suma para el sistema de recuperación de energía de red y los variadores vectoriales conectados. Consulte el capítulo "Opción filtro de red NF.." (\rightarrow pág. 33).

El dimensionado del filtro de red se basa en el flujo de carga máximo procedente de o dirigido a la red de alimentación.

Ejemplos:

Si se conectan dos variadores vectoriales MOVIDRIVE[®] MDX61B0110-503-4-00 (11 kW) al sistema de recuperación de energía de red y se alcanza el flujo de carga máximo en el funcionamiento motor, el filtro de red de suma deberá dimensionarse de acuerdo con la corriente de red de suma de los variadores vectoriales utilizados:

Ejemplo 1		
Variador vectorial	MOVIDRIVE® MDX61B0110-503-4-00	
Corriente nominal de red 1)	21,6 A _{CA}	
Corriente de red de suma	2 × 21,6 A = 43,2 A	
Selección de filtro de red	NF048-503 (referencia: 827 117 8)	
Corriente nominal I _N	48 A	


¹⁾ con 100 % de utilización y 3 × alimentación de tensión 400 V_{CA}

Si cada uno de los variadores vectoriales MOVIDRIVE $^{\circledR}$ funciona con una utilización continua de 125 %, la corriente de red de cada convertidor se eleva a 27 A_{CA} .

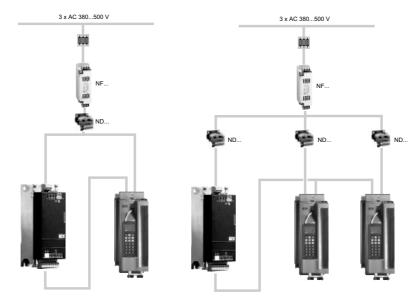
Ejemplo 2	
Variador vectorial	MOVIDRIVE® MDX61B0110-503-4-00
Corriente nominal de red 1)	27 A _{CA}
Corriente de red de suma	2 × 27 A = 54 A
Selección de filtro de red	NF063-503 (referencia: 827 414 2)
Corriente nominal I _N	63 A

¹⁾ con 125 % de utilización

El siguiente gráfico ilustra la instalación de un filtro de red de suma

Planificación

Conexión de circuito intermedio con sistema de recuperación de energía de red


Selección de reactancia de red ND..

El sistema de recuperación de energía de red MOVIDRIVE[®] MDR60A0150-503-00, en su función como módulo de freno, y los variadores vectoriales acoplados al circuito intermedio deben conectarse de la siguiente forma a la red de alimentación a través de inductancias.

Sistema de recuperación de energía de red $MOVIDRIVE^{\circledR}$ MDR60A0150-503-00 operando módulo de freno en la conexión de circuito intermedio con.

- un variador vectorial: una inductancia común (inductancia de suma)
- dos variadores vectoriales: tres inductancias independientes para cada variador vectorial y el sistema de recuperación de energía de red

El siguiente gráfico ilustra la instalación de las inductancias:

3687745675

Selección de inductancia de suma El dimensionado de las inductancias de suma del sistema de recuperación de energía de red y los variadores vectoriales se basa en el flujo de carga máximo procedente de o dirigido a la red de alimentación.

Si se conecta un variador vectorial MOVIDRIVE® MDX61B0220-503-4-00 (22 kW) al sistema de recuperación de energía de red MOVIDRIVE® MDR60A0150-503-00 empleado como módulo de freno y se alcanza el flujo de carga máximo en el funcionamiento motor, la inductancia de suma debe dimensionarse de acuerdo con la corriente de red del variador vectorial utilizado:

Ejemplo 1	
Variador vectorial	MOVIDRIVE® MDX61B0220-503-4-00
Corriente nominal de red 1)	41,4 A _{CA}
Selección de inductancia	ND045-013 (referencia: 826 013 3)
Corriente nominal I _N	45 A

¹⁾ con 100 % de utilización y 3 × alimentación de tensión 400 V_{CA}

Si el variador vectorial MOVIDRIVE $^{\$}$ funciona con una utilización continua de 125 %, la corriente de red se eleva a 51,7 A_{CA} .

De ahí resulta la siguiente selección de inductancias:

Ejemplo 2	
Selección de inductancia	ND085-013 (referencia: 0826 014 1)
Corriente nominal I _N	85 A

Selección de inductancias independientes Para seleccionar las inductancias independientes ND.., consulte la ayuda de selección que se encuentra en el capítulo "Opción inductancias tipo ND.." (\rightarrow pág. 28).

6.2.3 Formas de red

¡Tenga en cuenta las limitaciones de cada forma de red! Si desea utilizar sistemas de recuperación de la energía de red en alguna red que no esté incluida en la siguiente tabla, póngase en contacto con SEW-EURODRIVE.

Forma de red de acuerdo a VDE	Funcionamiento del sistema de recuperación de la energía de red
Con punto neutro conectado a tierra	Permitido sin limitaciones
Con punto neutro aislado	Consulte con SEW-EURODRIVE.
Con conductor exterior conectado a tierra	Prohibido

Planificación

Conexión de circuito intermedio con sistema de recuperación de energía de red

6.2.4 Requisitos de la red

Los sistemas de recuperación de energía requieren una red de alimentación estable y suficientemente dimensionada. En las siguientes tablas se describen los requisitos de la alimentación de red (potencia necesaria del transformador) en función de la longitud del conductor del transformador a la unidad.

- Se parte de un cortocircuito (U_k) del transformador de 6 %.
- Para cada unidad habilitada debe disponerse de la correspondiente potencia de transformador.
- Las unidades bloqueadas no se tienen en cuenta para el dimensionado del transformador.
 - MOVIDRIVE® MDR60A: Entrada bloqueada (debe bloquearse de manera activa)
 - MOVIDRIVE[®] MDR61B: Entrada habilitada (debe habilitarse de manera activa)
- En los sistemas de recuperación de energía MOVIDRIVE[®] MDR61B conmutados de manera sinusoidal y el sistema de recuperación de energía MOVIDRIVE[®] MDR60A1320 conmutado en bloque, la instalación de cables de alimentación dispuestos en paralelo en conexiones largas entre el transformador y la unidad presenta claras ventajas para el dimensionado del transformador.
- Un transformador con un cortocircuito bajo U_k (p. ej. 4 %) también aporta ventajas de cara al dimensionado. Póngase en contacto con SEW-EURODRIVE.
- Las secciones de cable deben ajustarse a la potencia de las unidades, no a la potencia media que cabría esperar. En el caso de secciones reducidas y cables de alimentación largos cabe esperar aumentos de tensión en otras unidades de la red.

Instalación

En el caso de los sistemas de recuperación de energía lo ideal es establecer un cableado punto a punto desde la alimentación hasta las unidades.

Proporción de transformador en función de la longitud de cable con 1 cable de alimentación de red

La siguiente tabla muestra la proporción de transformador con 1 cable de alimentación de red:

MOVIDRIVE®			U _k	50 m	100 m	150 m	200 m	250 m	300 m	350 m	400 m	450 m	500 m
MDR60A/61B	U _{Red}	f _{Red}	Transfor- mador		ı		ı	en	kVA		ı	!	!
	400 V	50 Hz		45	45	45	45	50	50	50	50	55	55
0150-503-00	480 V	60 Hz	6 %	45	45	45	45	45	45	50	50	50	50
	500 V	50 Hz		45	45	45	45	45	45	45	45	45	45
	400 V	50 Hz		85	85	90	95	100	105	115	_	-	-
0370-503-00	480 V	60 Hz	6 %	90	90	95	100	105	110	115	_	-	-
	500 V	50 Hz		90	90	95	100	100	105	110	_	-	-
	400 V	50 Hz		130	140	155	165	185	205	-	_	_	_
0750-503-00	480 V	60 Hz	6 %	145	155	170	185	200	220	-	_	_	_
	500 V	50 Hz		160	170	180	180	205	225	-	_	_	_
1320-503-00	400 V	50 Hz		240	270	320	380	490	_	-	_	_	_
Funcionamiento	480 V	60 Hz	6 %	240	270	310	365	440	_	1	_	_	_
132 kW	500 V	50 Hz		265	295	330	370	430	_	-	_	_	_
1320-503-00	400 V	50 Hz		280	335	410	_	_	_	-	_	_	_
Funcionamiento	480 V	60 Hz	6 %	300	345	415	_	_	_	-	_	_	_
160 kW	500 V	50 Hz		330	370	430	_	_	_	-	_	_	_
	400 V	50 Hz		190	190	210	240	275	325	-	_	_	_
1600-503-00	480 V	60 Hz	6 %	215	235	265	305	355	430	-	_	_	_
	500 V	50 Hz	1	265	295	330	370	430	510	-	_	_	_
	400 V	50 Hz		300	335	410	535	770	1370	-	_	_	_
2500-503-00	480 V	60 Hz	6 %	350	420	530	705	1060	2130	-	_	_	_
	500 V	50 Hz	1	435	520	640	835	1200	2140	1	_	_	-

Proporción de transformador en función de la longitud de cable con 2 cables de alimentación de red paralelos

Los sistemas de recuperación de energía de red MOVIDRIVE[®] MDR60A1320 y MOVIDRIVE[®] MDR61B1600/2500 pueden equiparse con 2 cables de alimentación de red en paralelo. La siguiente tabla muestra la proporción de transformador para la conexión con 2 cables de alimentación de red paralelos:

MOVIDRIVE®		_	Uk	50 m	100 m	150 m	200 m	250 m	300 m	350 m	400 m	450 m	500 m
MDR60A/61B	U _{Red}	f _{Red}	Transfor- mador					en	kVA				
1320-503-00	400 V	50 Hz		220	240	260	285	315	350	400	460	-	-
Funcionamiento	480 V	60 Hz	6 %	230	245	265	285	310	340	375	420	-	_
132 kW	500 V	50 Hz		255	270	285	305	330	355	385	415	-	_
1320-503-00	400 V	50 Hz		270	300	330	375	430	_	-	_	-	-
Funcionamiento	480 V	60 Hz	6 %	280	305	335	370	415	_	-	_	-	-
160 kW	500 V	50 Hz		315	335	360	395	430	_	-	_	-	-
	400 V	50 Hz		190	190	190	195	210	225	245	270	-	-
1600-503-00	480 V	60 Hz	6 %	205	220	235	250	265	290	315	350	-	-
	500 V	50 Hz		355	270	285	305	330	355	385	415	-	-
	400 V	50 Hz		300	300	320	360	410	475	570	705	_	_
2500-503-00	480 V	60 Hz	6 %	330	365	405	460	530	620	757	960	-	-
	500 V	50 Hz		410	450	500	560	640	745	890	1105	_	_

Planificación

Conexión de circuito intermedio con sistema de recuperación de energía de red

6.2.5 Contactor de red y fusibles de red

Contactor de red

Utilice exclusivamente contactores de red con la categoría de uso AC-3 (EN 60947-4-1).

¡ATENCIÓN!

- No utilice el contactor de red K11 (→ instrucciones de funcionamiento MOVIDRIVE® MDX60B/61B, Cap. "Esquema de conexiones equipo básico") para el modo manual, sino sólo para conectar y desconectar el variador. Utilice el modo manual para los comandos "Habilitación/Parada", "Dcha/Parada" o "Izda/Parada".
- Para el contactor de red K11 deberá mantenerse un tiempo mínimo de desconexión de 10 s.

Tipos de fusibles de red

Tamaños 0 - 6

Tipos de protección de línea de las clases gL, gG:

- Tensión nominal del fusible ≥ tensión nominal de la red
- La corriente nominal del fusible debe seleccionarse, dependiendo del grado de utilización del convertidor, para el 100 % o el 125 % de la corriente nominal del convertidor.

Interruptores automáticos de las características B, C:

- Tensión nominal del interruptor automático ≥ tensión nominal de red
- La corriente nominal de los interruptores automáticos ha de exceder en un 10 % la corriente nominal de red del convertidor.

Tamaño 7

Para proteger el aparato se recomiendan fusibles de red de tipo gL o gRL. Se trata de una combinación de semiconductores y protección de cables que se necesita para proteger el rectificador de entrada.

NOTA

Para el sistema de recuperación de la energía de red MOVIDRIVE[®] MDR61B1600/2500 se aplica lo siguiente:

 Para las tensiones de red > 480 V, ajuste al mismo tiempo las señales "Habilitado" y "Bloqueo regulador".

6.3 Conexión de circuito intermedio y fusibles de circuito intermedio

6.3.1 Conexión de circuito intermedio

La longitud de cable que se puede utilizar de la primera unidad a la última es de 5 m como máximo. Se puede prescindir de un fusible en el circuito intermedio siempre que se cumplan las dos condiciones siguientes:

- La conexión de circuito intermedio está protegida mediante el fusible de red posicionado delante del sistema de recuperación de energía de red. Obsérvese que en el circuito intermedio fluya 1,25 veces la corriente de red. En este caso resulta sumamente apropiada una conexión de circuito intermedio con la sección de bornas máxima permitida de los aparatos conectados (→ "Sección de cable de la conexión de circuito intermedio" (→ pág. 78)).
- La longitud de la línea de la primera unidad a la última, si la sección de cable es pequeña, es de un máximo de 3 m, el peligro de cortocircuito se ha reducido al mínimo y el cable no se encuentra posicionado cerca de substancias inflamables.

La longitud de la conexión de circuito intermedio deberá mantenerse, en todo caso, lo más corta posible.

6.3.2 Fusibles de circuito intermedio F25 ... F26:

El fusible de circuito intermedio deberá dimensionarse para la protección de la línea de la conexión de circuito intermedio. Deberá instalarse un fusible para cada línea, $+U_Z$ y $-U_Z$. Los fusibles deben poder desconectar la tensión CC de circuito intermedio existente. Obsérvese que en el circuito intermedio fluya 1,25 veces la corriente de red.

Planificación

Conexión de circuito intermedio y fusibles de circuito intermedio

6.3.3 Juegos de cables y accesorios para la conexión del circuito intermedio

Descripción

SEW-EURODRIVE recomienda encarecidamente que se empleen los accesorios mencionados en la siguiente tabla. Los juegos de cables, las conexiones y adaptadores de circuito intermedio cuentan con la rigidez exigida. Los juegos de cable están además identificados por colores, ya que la polarización errónea y el fallo a tierra podrían dejar inutilizados los aparatos conectados.

Asignación

En la siguiente tabla figuran los accesorios recomendados para la conexión del circuito intermedio. Sólo es posible un tendido fijo.

para conectar MOVIDRIVE®	Sistema de recupera	ción de energía de red
MDX60B/61B/62B	MOVIDRIVE® MDR60A	MOVIDRIVE® MDR61B
0015 – 0110	Juego de cables DCP12A Ref. de pieza 814 567 9	
0110 – 0300	Juego de cables DCP21A Ref. de pieza 1 813 177 8	
0150 – 0370	Juego de cables DCP13A Ref. de pieza 814 250 5	Adaptador de circuito intermedio DLZ31B Ref. de pieza 1 823 628 6
0450 – 0750	Juego de cables DCP15A Ref. de pieza 814 251 3	
0900 – 1320	Juego de cables DCP16A Ref. de pieza 817 593 4	
1600 – 2500		Conexión de circuito intermedio DLZ11B Referencia de pieza (→ pág. 42)

Juegos de cables

Mediante su longitud, los cables delimitan la conexión de circuito intermedio a la longitud permitida de 5 metros, aunque esta longitud puede acortarse a medida por parte del cliente en el caso de conectar varios aparatos. Los terminales de cable para realizar la conexión al sistema de recuperación de energía de red y a un convertidor están incluidos en el juego de cables. Para conectar otros convertidores debe utilizar terminales de cable comunes. En ese caso, deberá conectar los convertidores en estrella al sistema de recuperación de energía de red y trenzar los conductores entre sí. Emplee un subdistribuidor de carriles si las bornas del circuito intermedio del sistema de recuperación de energía de red no fueran suficientes.

Los juegos de cable están compuestos por las siguientes piezas:

DCP12A 814 567 9	DCP21A 1 813 177 8	DCP13A 814 250 5	DCP15A 814 251 3	DCP16A 817 583 4
1 x conductor de PVC H07V-K Color negro, 4 mm ² (AWG12), I = 5 m	1 x conductor de PVC H07V-K Color negro, 6 mm ² (AWG10), I = 5 m	1 x conductor de PVC H07V-K Color negro, 25 mm ² (AWG4), I = 5 m	1 x conductor de PVC H07V-K Color negro, 50 mm ² (AWG1/0), I = 5 m	2 x conductor de PVC H07V-K Color negro, 150 mm ² (AWG5/0), I = 5 m
1 x conductor de PVC H07V-K Color rojo, 4 mm ² (AWG12), I = 5 m	1 x conductor de PVC H07V-K Color rojo, 6 mm ² (AWG10), I = 5 m	1 x conductor de PVC H07V-K Color rojo, 25 mm ² (AWG4), I = 5 m	1 x conductor de PVC H07V-K Color rojo, 50 mm ² (AWG1/0), I = 5 m	2 x tubos termorretráctiles, color rojo, para la diferenciación por colores de los conductores de PVC

DCP12A 814 567 9	DCP21A 1 813 177 8	DCP13A 814 250 5	DCP15A 814 251 3	DCP16A 817 583 4
2 × terminales de línea colectiva DIN 46237 4-6 2 × terminales de línea colectiva DIN 46237 6-6	2 × terminales de línea colectiva DIN 46234 6-6 2 × terminales de línea colectiva DIN 46234 4-6	4 × terminales de línea colectiva DIN 46234 6-25	4 × terminales de cable a presión DIN 46235 10-50	2 × terminales de cable a presión DIN 46235 10-150
4 × punteras de cable DIN 46228 E 4-12	2 × punteras de cable DIN 46228 E 6-12	2 × terminales de cable a presión DIN 46235 10-25		4 × terminales de cable a presión DIN 46235 12-150
2 × terminales de línea colectiva DIN 46234 10-6		2 × terminales de cable a presión DIN 46235 12-25	2 × terminales de cable a presión DIN 46235 12-50	
2 × terminales de línea colectiva DIN 46234 12-6				

Conexión de circuito intermedio y fusibles de circuito intermedio

Protección

En la protección de las secciones de cable tenga en cuenta las **prescripciones específicas del país y de la instalación** así como las prescripciones para la **instalación conforme a UL** en caso necesario. Cuando se utilizan los juegos de cables prefabricados, SEW-EURODRIVE recomienda las siguientes protecciones:

	Tipo de juego de cable						
	DCP12A DCP21A DCP13A DCP15A DCP16A						
Protección ¹⁾	30 A	50 A	80 A	160 A	315 A		

¹⁾ Con una temperatura ambiente de 25 $^{\circ}$ C; tensión nominal de red de 400 V_{CA} ; corriente de circuito intermedio = 100 % carga en el convertidor

DLZ11B y DLZ31B

Para obtener más información sobre la conexión de circuito intermedio DLZ11B y el adaptador de circuito intermedio DLZ31B tenga en cuenta los datos contenidos en los siguientes capítulos:

- Conexión de circuito intermedio DLZ11B (→ pág. 42)
- Adaptador de circuito intermedio DLZ31B (→ pág. 45)

Planificación

Conexión de circuito intermedio y fusibles de circuito intermedio

6.3.4 Secciones de cable y pares de apriete de la conexión de circuito intermedio

Seleccione como sección de cable la sección de las bornas de conexión máxima posible del convertidor menor. La siguiente tabla indica las secciones y los pares de apriete de bornas de conexión de las unidades de potencia de los variadores vectoriales MOVIDRIVE®:

MDX60/61B5A3	0005	8000	0011	0014	0015	0022	0030	0040
Tamaño	OS OM		1					
Sección de bornas de conexión de la unidad de potencia	4 mn	Borne separable en fila 4 mm² puntera de cable DIN 46228			4 mı	Borne sepa m ² puntera de	rable en fila e cable DIN 4	6228
Par de apriete	0,6 Nm							

MDX61B503	0055	0075	0110	0150	0220	0300	
Tamaño	2S		2		3		
Sección de bornas de conexión de la unidad de potencia	4 mm ² punt	a separables era de cable 16228	Tornillo con arandela incorporada M4 con estribo de sujeción 4 mm² puntera de cable DIN 46228 6 mm² terminal de cable de engarce a presión DIN 46234		n arandela incor máx. 25 mm ² e de engarce a p	porada M6 resión DIN 46234	
Par de apriete		1,5 N	lm		3,5 Nm		

MDX61B503	0370	0450	0550	0750	0900	1100	1320	
Tamaño	4	4 5			6			
Sección de bornas de conexión de la unidad de potencia	Term	Perno M10 con tuerca máx. 70 mm ² Terminal de cable a presión DIN 46235			Perno M12 con tuerca máx. 185 mm ² Terminal de cable a presión DIN 46235			
Par de apriete	14 Nm				20 Nm			

MDX61B503	1600	2000	2500			
Tamaño	7					
Sección de bornas de conexión de la unidad de potencia		Pletina de conexión con orificio para M12 máx. 2 × 240 mm ² Terminal de cable a presión DIN 46235				
Par de apriete		70 Nm				

Ejemplo

Se unen entre sí un MOVIDRIVE MDX61B0220 y un MOVIDRIVE MDX61B0110 a través de un circuito intermedio. La sección de bornas de conexión del convertidor menor es de 6 mm². Por lo tanto, deberá emplearse un cable de 6 mm² de sección, así como terminales de cable de engarce a presión.

6.4 Selección de la resistencia de frenado BW... / BW...-T / BW...-P

6.4.1 Alta tensión

Las líneas de alimentación a la resistencia de frenado llevan **alta tensión continua** (aprox. 900 V). Las líneas de la resistencia de frenado han de ser las adecuadas para tan alta tensión continua.

6.4.2 Longitud de cable

- Los datos en este capítulo son válidos para las resistencias de frenado BW... / BW...-T y BW...-P.
- La longitud de línea máxima admisible entre MOVIDRIVE[®] y resistencia de frenado es de 100 m.

6.4.3 Conexión en paralelo

Para algunas combinaciones de convertidor y resistencia es necesario conectar dos resistencias de frenado con el mismo valor en paralelo. En ese caso ha de ajustarse en el relé bimetálico la corriente de disparo al doble del valor indicado en la tabla I_F. En las resistencias de frenado BW...-T / BW...-P, el interruptor térmico / relé de sobrecorriente se deben conectar en serie.

Selección de la resistencia de frenado BW... / BW...-T / BW...-P

6.4.4 Potencia máxima de frenado

Debido a la tensión del circuito intermedio y al valor de resistencia puede ocurrir que la potencia máxima de frenado sea menor que la capacidad de carga de la resistencia de frenado. La potencia máxima de frenado se calcula como sigue:

$$P \max = \frac{U^2 DC}{R}$$

 \mathbf{U}_{DC} es la tensión de circuito intermedio máxima admisible, asciende a

- para MOVIDRIVE[®] MDX60/61B...-5_3 (unidades de 400/500 V_{CA}) U_{CC} = 970 V_{CC} y
- para MOVIDRIVE[®] MDX61B...-2_3 (unidades de 230 V_{CA}) U_{CC} = 485 V_{CC} .

La siguiente tabla indica los valores de potencia máxima de frenado posibles para diferentes valores de resistencia.

	Potencia máxima	de frenado
Valor de resistencia	MDX60/61B5_3 (Equipos de 400/500 V _{CA})	MDX61B2_3 (Equipos de 230 V _{CA})
100 Ω	9,4 kW	2,3 kW
72 Ω	13,0 kW	3,2 kW
68 Ω	13,8 kW	3,2 kW
47 Ω	20,0 kW	5,0 kW
39 Ω	24,0 kW	6,0 kW
27 Ω	34,8 kW	8,7 kW
18 Ω	52,2 kW	13,0 kW
15 Ω	62,7 kW	15,6 kW
12 Ω	78,4 kW	19,6 kW
9 Ω (2 × BW018 en paralelo)	104 kW	26,1 kW
7,5 Ω (2 × BW915 en paralelo)	125 kW	31,3 kW
6 Ω	156 kW	39,2 kW
3 Ω (2 × BW106/206 en paralelo)	313 kW	78,4 kW
2,5 Ω	376 kW	_
1,4 Ω	670 kW	_

Datos técnicos de la resistencia de frenado BW...-T / BW...-P

BWT / BWP	
Sección de conexión contacto de señalización / par de apriete	1 x 2,5 mm ² / 1 Nm
Potencia de conmutación del contacto de señalización del interruptor térmico	• 2 A _{CC} / 24 V _{CC} (DC11) • 2 A _{AC} / 230 V _{CA} (AC11)
Contacto de conexión (contacto normalmente cerrado)	De conformidad con EN 61800-5-1

6.4.5 Asignación a los aparatos de 400/500 V_{CA} (...-5_3)

Resistencia de frenad BW	o de tipo	BW090- P52B	BW100-005	BW100-006	BW072- 003	BW072- 005	BW168	BW268
Referencia		824 563 0	826 269 1	821 701 7	826 058 3	826 060 5	820.604 X	820 715 1
Resistencia de frenad BWT	o de tipo			BW100-006-T			BW168-T	BW268-T
Ref. de pieza				1820 419 8			1820 133 4	1820 417 1
Potencia continua de	frenado							
	(= 100% ED)	0,10 kW	0,45 kW	0,6 kW	0,23 kW	0,45 kW	0.8 kW	1,2 kW
Capacidad de carga	50 % ED ¹⁾	0,15 kW	0,60 kW	1,1 kW	0,31 kW	0,60 kW	1,4 kW	2,2 kW
para	25 % ED	0,2 kW	0,83 kW	1,9 kW	0,42 kW	0,83 kW	2,6 kW	3,8 kW
	12 % ED	0,4 kW	1,11 kW	3,6 kW	0,58 kW	1,11 kW	4,8 kW	7,2 kW
	6 % ED	0,7 kW	2,00 kW	5,7 kW	1,00 kW	2,00 kW	7,6 kW	11 kW
		¡Te	ner en cuenta	la limitación de	la potencia	regenerativ	a del convertion	dor!
			(= 150 % de	la potencia de m	otor recome	ndada → da	tos técnicos)	
Valor de resistencia	R _{BW}	90 Ω ±35 %	100 !	Ω ±10 %	72 Ω :	±10 %	68 Ω :	±10 %
Corriente de disparo (de F16) I _F	-	0,8 A	2,4 A	0,6 A	1 A	3,4 A	4,2 A
Tipo		PTC	Construcción plana	Resistencia bobinada sobre tubo cerámico	Construct	ción plana		pinado sobre erámico
Conexiones / Par de apriete		cable	cable	Bornas cerámicas 2,5 mm ² (AWG13) 0,5 Nm	cal	ble	2,5 mm ²	erámicas (AWG13) Nm
Índice de protección		IP20	IP54	IP20 (en estado montado)	IP54 IP20 (en estac		ido montado)	
Temperatura ambiental ϑ _U				-20) +40 °C			
Tipo de refrigeración				KS = A	utorrefrigera	nte		
Para MOVIDRIVE® (recomendación)		0005 0014	0005 0022	0015 0040	0005	0014	0005 0040	0015 0040

1) ED = Duración de conexión de la resistencia de frenado asociada a la duración de un ciclo $T_D \le 120 \ s$

Resistencia de frenad	lo de tipo BW	BW147	BW247	BW347	BW039-012		
Referencia		820 713 5	820 714 3	820 798 4	821 689 4		
Resistencia de frenad BWT	lo de tipo	BW147-T	BW247-T	BW347-T	BW039-012-T	BW039-026-T	BW039-050-T
Ref. de pieza		1820 134 2	1820 084 2	1820 135 0	1820 136 9	1820 415 5	1820 137 7
Potencia continua de Capacidad de carga para	frenado (= 100 % ED) 50 % ED ¹⁾ 25 % ED 12 % ED	1,2 kW 2,2 kW 3,8 kW 7,2 kW 11 kW	2,0 kW 3,6 kW 6,4 kW 12 kW 19 kW	4,0 kW 7,2 kW 12,8 kW 20 kW ²⁾ 20 kW	1,2 kW 2,1 kW 3,8 kW 7,2 kW	2,6 kW 4,7 kW 8,3 kW 15,6 kW	5,0 kW 8,5 kW 15,0 kW 24,0 kW
Valor de resistencia	6 % ED	¡Tene	er en cuenta la l	imitación de la	potencia regeno or recomendada		
	R _{BW}			0.0.4	A		44.0.4
Corriente de disparo	(de F16) I _F	5 A	6,5 A	9,2 A	5,5 A	8,1 A	11,3 A
Tipo		Resistencia hobinada sobre tubo cerámico			Resistencia de rejilla de acero		
Conexiones / Par de apriete		Bornas cerámicas de 2,5 mm² (AWG13) / 0,5 Nm Pernos M8 / BW347-T: Bornas cerámicas de 10 mm² (AWG8) / 1,6 Nm 6 Nm					
Índice de protección		IP20 (en estado montado)					
Temperatura ambiental ϑ _U		-20 +40 °C					
Tipo de refrigeración		KS = Autorrefrigerante					
Para MOVIDRIVE [®] (recomendación)		0055/0075 0110					

¹⁾ ED = Duración de conexión de la resistencia de frenado asociada a la duración de un ciclo $T_D \le 120 \ s$

²⁾ Limitación física de potencia debida a la tensión de circuito intermedio y al valor de resistencia.

Planificación

Selección de la resistencia de frenado BW... / BW...-T / BW...-P

Resistencia de frenad	lo de tipo BW	BW018-015			
Ref. de pieza		821 684 3			
Resistencia de frenad BWT/-P	lo de tipo	BW018-015-P	BW018-035-T	BW018-075-T	BW915-T
Ref. de pieza		1820 416 3	1820 138 5	1820 139 3	1820 413 9
Potencia continua de frenado (= 100 % ED) Capacidad de carga para 50 % ED ¹⁾ 25 % ED 12 % ED 6 % ED		1,5 kW 2,5 kW 5,9 kW 12,7 kW 4,5 kW 10,5 kW 22,5 kW 6,7 kW 11,4 kW 26,6 kW 52,2 kW 52,2 kW 11,4 kW 26,6 kW 52,2 kW 52,2 kW 67 kW 11,4 kW 26,6 kW 52,2 kW 67 kW 67 kW 67 kW 67 kW 67 kW 67 kW 68 kW 69 kW 69 kW 69 kW 60		12,7 kW 22,5 kW 33,7 kW 52,2 kW ²⁾ otencia regenerativa de	
Valor de resistencia	R _{BW}	(100 /0	18 Ω ±10 %	15 Ω ±10 %	
Corriente de disparo		9,1 A	13,9 A	20,4 A	32,6 A
Tipo	, , , , , , , , , , , , , , , , , , ,	Resistencia bobinada sobre tubo cerámico Resistencia de rejilla de acero			ero
Conexiones / Par de apriete		BW018-015: Bornas de cerámica 2,5 mm² (AWG13) / 0,5 Nm BW018-015-P: Borna 2,5 mm² (AWG13) / 1 Nm	Pernos M8 / 6 Nm		
Índice de protección		IP20 (en estado montado)			
Temperatura ambiental ϑ _U			-20	+40 °C	
Tipo de refrigeración			KS = Autor	refrigerante	
Para MOVIDRIVE® 0150/ (recomendación)		0150/022	20 y 2 × paralelo para 0370/0450 ³⁾		0220

- 1) ED = Duración de conexión de la resistencia de frenado asociada a la duración de un ciclo $T_D \le 120 \text{ s}$
- 2) Limitación física de potencia debida a la tensión de circuito intermedio y al valor de resistencia.
- 3) En el caso de conexión en paralelo se duplican la capacidad de carga y la corriente de disparo.

Resistencia de frenad BW	lo de tipo	BW012-025			
Referencia		821 680 0			
Resistencia de frenado de tipo BWT/-P		BW012 025 P	BW012-050T	BW012-100-T	
Ref. de pieza		1820 414 7	1820 140 7	1820 141 5	
Potencia continua de Capacidad de carga para	frenado (= 100 % ED) 50 % ED ¹⁾ 25 % ED 12 % ED 6 % ED		5,0 kW 8,5 kW 15,0 kW 22,5 kW 38,0 kW mitación de la potencia regene otencia de motor recomendada -		
Valor de resistencia	R _{BW}		12 Ω ±10 %		
Corriente de disparo	(de F16) I _F	14,4 A	20,4 A	28,8 A	
Tipo			Resistencia de rejilla de acero		
Conexiones / Par de apriete		Pernos M8 / 6 Nm			
Índice de protección		IP20 (en estado montado)			
Temperatura ambiental ϑ_{U}		-20 +40 °C			
Tipo de refrigeración			KS = Autorrefrigerante		
Para MOVIDRIVE® (recomendación)			0300		

¹⁾ ED = Duración de conexión de la resistencia de frenado asociada a la duración de un ciclo $T_D \le 120 \text{ s}$

Resistencia de frenac	do de tipo BW	BW106-T	BW206-T	BW1.4-170	BW003-420-T	
Ref. de pieza		1820 083 4	1820 412 0	1330 152 7	1330 124 5	
Potencia continua de frenado (= 100 % ED)		13,5 kW	18 kW	17 kW	42 kW	
Capacidad de carga para	50 % ED ¹⁾ 25 % ED 12 % ED 6 % ED	23 kW 40 kW 61 kW 102 kW	30,6 kW 54 kW 81 kW 136,8 kW	30,6 kW 51 kW 85 kW 270 kW	75,6 kW 126 kW 210 kW 360 kW	
Valor de resistencia	R _{BW}	6 Ω ±	10 %	1,4 Ω ±10 %	2,5 Ω ±10 %	
Corriente de disparo	(de F16) I _F	47,4 A	54,7 A	110 A	129 A	
Tipo		Resistencia de rejilla de acero				
Conexiones / Par de apriete		Pernos N	/18 / 6 Nm	Pernos M12 / 15,5 Nm		
Índice de protección		IP20 (en estado montado)				
Temperatura ambiental ϑ _U		-20 +40 °C				
Tipo de refrigeración		KS = Autorrefrigerante				
Para MOVIDRIVE® (recomendación)		03700750 y 2 0900/110	: × paralelo para 00/1320 ²⁾	1600/20	000/2500	

¹⁾ ED = Duración de conexión de la resistencia de frenado asociada a la duración de un ciclo $T_D \le 120 \text{ s}$

²⁾ En el caso de conexión en paralelo se duplican la capacidad de carga y la corriente de disparo.

Planificación

6.4.6 Ejemplo

- · Carretilla elevadora para estanterías con 3 accionamientos
- Únicamente los accionamientos de elevación y traslación pueden funcionar simultáneamente
- Rampa de parada de emergencia 1 segundo
- Accionamiento de traslación: MOVIDRIVE[®] MDX61B0300-503-4-00, P_{Mot} = 30 kW
- Accionamiento de elevación: MOVIDRIVE® MDX61B0450-503-4-00, P_{Mot} = 45 kW
- Accionamiento del elemento telescópico: MOVIDRIVE® MDX61B0022-503-00, P_{Mot} = 2,2 kW

El factor de simultaneidad para la aceleración y la deceleración pueden ser diferentes. Dependiendo de la aplicación, no todos los accionamientos aceleran necesariamente a la vez (funcionamiento motor). Es necesario garantizar el frenado simultáneo (funcionamiento generador) de todos los accionamientos funcionando a la vez.

Comprobación de la autorización para la combinación de aparatos del MDR60A0750

No será necesaria la cantidad máxima de admisible de convertidores (6). Debe comprobarse la limitación mediante la suma de los puntos de valoración (potencia de conexión del convertidor / combinaciones de convertidores).

- 1 MDX61B0300-503-00 = 4 puntos
- 1 MDX61B0450-503-00 = 8 puntos
- 1 MDX61B0022-503-00 = 1 punto

Esto da un resultado de 13 puntos. Es posible conectar 45 puntos al MDR60A0750. La conexión de los 3 convertidores al sistema de recuperación de energía de red es admisible.

Comprobación del límite de carga del motor

$$\Sigma$$
 P_{máx mot} = (P_{despl} + P_{elev}) × 150 % \leq P_{MDR} × 150 % Σ P_{máx mot} = 112,5 kW \leq 112,5 kW \rightarrow admisible

Comprobación del límite de carga del generador

Potencias máximas de frenado generadoras actuando simultáneamente:

$$\begin{aligned} P_{\text{máx gen}} &= (P_{\text{despl}} + P_{\text{elev}}) \times 150 \% \times \eta \\ P_{\text{máx gen}} &= (30 \text{ kW} + 45 \text{ kW}) \times 150 \% \times 0.85 \le P_{\text{MDR}} \times 150 \% \rightarrow \text{admisible} \end{aligned}$$

- Una rampa de parada de un segundo partiendo de 3.000 rpm supone el 0,833 % de ED (duración de conexión) de una resistencia de frenado.
 - (ED = rampa de parada duración de un ciclo = 1 s / 120 s = 0.00833)
- De acuerdo a la tabla de asignación se obtiene la siguiente posibilidad de combinación:
 - BW106, capacidad de carga para 1 % ED: 120 kW
 - alternativa: 2 × BW012-025 en paralelo, capacidad de carga para 1 % ED: en conjunto 100 kW

6.5 Instalación conforme a las medidas de compatibilidad electromagnética (CEM) según EN 61800-3

Los sistemas de accionamiento con MOVIDRIVE® se han concebido como componentes para su montaje en máquinas e instalaciones. Cumplen con la normativa de productos CEM EN 61800-3 "Accionamientos eléctricos de velocidad variable". Según la directiva de Compatibilidad Electromagnética 2004/108/CE, con el cumplimiento de las indicaciones para la instalación conforme a las normas de CEM quedan también cumplidas las condiciones relativas a los componentes de SEW para la homologación CE de la máquina o la instalación completa en la que haya sido incluido.

Los variadores vectoriales MOVIDRIVE[®] MDX60/61B tamaño 0, 1 y 2 incorporan de serie un filtro de red. Estas unidades tienen del lado de la red, sin medidas adicionales, la clase de valor límite C2 conforme a EN 61800-3.

6.5.1 Resistencia a interferencias

MOVIDRIVE[®] cumple con **todos** los requisitos de la EN 61800-3 en relación con la inmunidad de interferencias.

6.5.2 Emisión de interferencias del sistema de recuperación de energía de red MOVIDRIVE® MDR60A/61B

SEW-EURODRIVE recomienda las siguientes medidas para alcanzar las clases de valor límite correspondientes:

Clase de valor límite C3 La instalación conforme a las medidas de compatibilidad electromagnética (CEM) según EN 61800-3, clase de valor límite C3, se consigue en el tamaño 4 de la siguiente manera:

Clase de valor límite C3	En el motor	En la red
Ciase de valor illille C3	Tamaño 4	Tamaño 4
1. Posibilidad	Anillo de ferrita HD	Filtro de red NF e inductancia ND
2. Posibilidad	Cable de motor apantallado	Filtro de red NF e inductancia ND
3. Posibilidad	Filtro de salida HF	Filtro de red NF e inductancia ND

La instalación conforme a las medidas de compatibilidad electromagnética (CEM) según EN 61800-3, clase de valor límite C3, se consigue en el tamaño 7 de la siguiente manera:

Clase de valor límite C3	En el motor	En la red
Clase de valor illille Cs	Tamaño 7	Tamaño 7
1. Posibilidad	Anillo de ferrita HD005	no se requiere ninguna medida
2. Posibilidad	Cable de motor apantallado	no se requiere ninguna medida

Clase de valor límite C2 La instalación conforme a las medidas de compatibilidad electromagnética (CEM) según EN 61800-3, clase de valor límite C2, se consigue en el tamaño 2 y el tamaño 3 de la siguiente manera:

Clase de valor límite C2	En el motor	En la red
Ciase de valor illille C2	Tamaños 2 – 3	Tamaños 2 – 3
1. Posibilidad	Cable de motor apantallado	Filtro de red NF e inductancia ND
2. Posibilidad	Filtro de salida HF	Filtro de red NF e inductancia ND
3. Posibilidad	Anillo de ferrita HD	Filtro de red NF e inductancia ND

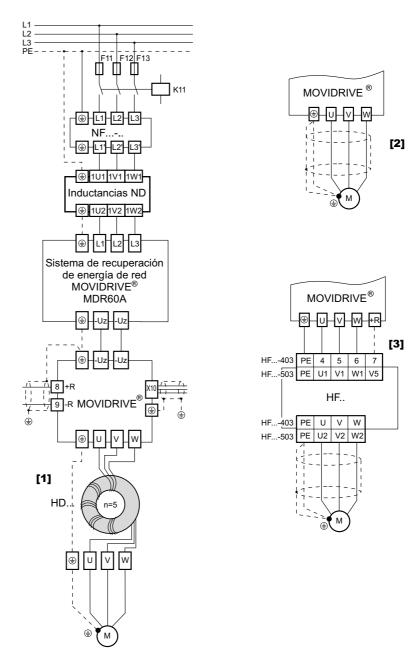
Planificación

Instalación conforme a las medidas de compatibilidad electromagnética (CEM) según EN 61800-3

La instalación conforme a las medidas de compatibilidad electromagnética (CEM) según EN 61800-3, clase de valor límite C2, se consigue en el tamaño 7 de la siguiente manera:

Clase de valor límite C2	En el motor	En la red	
Clase de valor illilité C2	Tamaño 7	Tamaño 7	
1. Posibilidad	Anillo de ferrita HD005	filtro de red NF600-503	
2. Posibilidad	Cable de motor apantallado	filtro de red NF600-503	

6.5.3 Redes IT


NOTA

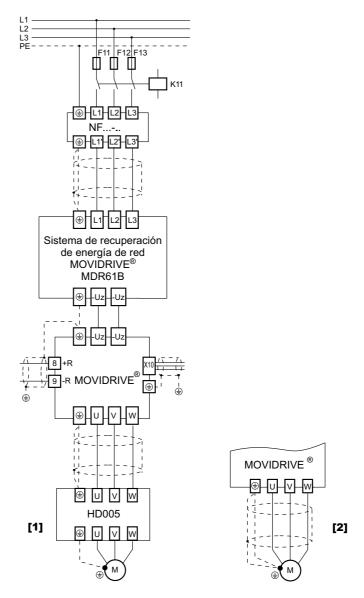
Los valores límite de compatibilidad electromagnética para la emisión de interferencias no están especificados en los sistemas de alimentación sin un punto de estrella conectado a tierra (sistemas IT).

6.5.4 Esquema de conexiones de MOVIDRIVE® MDR60A tamaños 2 – 4

El siguiente esquema de conexiones muestra las medidas necesarias para una instalación conforme a las medidas de compatibilidad electromagnética (CEM). Tenga en cuenta las medidas anteriores para alcanzar las clases de valor límite correspondientes.

Instalación conforme a las medidas de compatibilidad electromagnética

- [1] = 1. Posibilidad de solución con anillo de ferrita HD001 HD003
- [2] = 2. Posibilidad de solución con cable de motor apantallado
- [3] = 3. Posibilidad de solución con filtro de salida HF... (véase cap. "Filtro de salida HF")



Instalación conforme a las medidas de compatibilidad electromagnética (CEM) según EN 61800-3

6.5.5 Esquema de conexiones de MOVIDRIVE® MDX61B de tamaño 7

El siguiente esquema de conexiones muestra las medidas necesarias para una instalación conforme a las medidas de compatibilidad electromagnética (CEM). Tenga en cuenta las medidas anteriores para alcanzar las clases de valor límite correspondientes.

Instalación conforme a las medidas de compatibilidad electromagnética

- [1] = 1. Posibilidad de solución con anillo de ferrita HD005
- [2] = 2. Posibilidad de solución con cable de motor apantallado

7 Indicaciones generales

7.1 Uso de la documentación

Esta documentación es parte integrante del producto y contiene una serie de indicaciones importantes para el funcionamiento y el servicio. La documentación está destinada a todas las personas que realizan trabajos de montaje, instalación, puesta en marcha y servicio en el producto.

La documentación debe estar disponible en estado legible. Cerciórese de que los responsables de la instalación o de operación, así como las personas que trabajan en el equipo bajo responsabilidad propia han leído y entendido completamente la documentación. En caso de dudas o necesidad de más información, diríjase a SEW-EURODRIVE.

7.2 Estructura de las notas de seguridad

7.2.1 Significado de las palabras de indicación

La tabla siguiente muestra el escalonamiento y el significado de las palabras de indicación para notas de seguridad, advertencias a daños materiales y otras indicaciones.

Palabra de indicación	Significado	Consecuencias si no se respeta
▲ ¡PELIGRO!	Advierte de un peligro inminente	Lesiones graves o fatales
▲ ¡ADVERTENCIA!	Posible situación peligrosa	Lesiones graves o fatales
▲ ¡PRECAUCIÓN!	Posible situación peligrosa	Lesiones leves
IMPORTANTE!	Posibles daños materiales	Daños en el sistema de accionamiento o en su entorno
NOTA	Indicación o consejo útil: Facilita el manejo del sistema de accionamiento.	

7.2.2 Estructura de las notas de seguridad referidas a capítulos

Las notas de seguridad referidas a capítulos son válidas no sólo para una actuación concreta sino para varias acciones dentro de un tema. Los pictogramas empleados remiten a un peligro general o específico.

Aquí puede ver la estructura formal de una nota de seguridad referida a un capítulo:

▲ ¡PALABRA DE INDICACIÓN!

Tipo del peligro y su fuente.

Posible(s) consecuencia(s) si no se respeta.

Medida(s) para la prevención del peligro.

7.2.3 Estructura de las notas de seguridad integradas

Las notas de seguridad integradas están integradas directamente en las instrucciones de acción antes del paso de acción peligroso.

Aquí puede ver la estructura formal de una nota de seguridad integrada:

• A ¡PALABRA DE INDICACIÓN! Tipo de peligro y su fuente.

Posible(s) consecuencia(s) si no se respeta.

Medida(s) para la prevención del peligro.

Indice Derecho

Indicaciones generales

Derechos de reclamación en caso de defectos

7.3 Derechos de reclamación en caso de defectos

Atenerse a la documentación es el requisito previo para que no surjan problemas y para el cumplimiento de posibles derechos de reclamación en caso de defectos del producto. Por ello, lea la documentación antes de trabajar con el equipo.

7.4 Exclusión de responsabilidad

Atenerse a la documentación es el requisito previo básico para el funcionamiento seguro del sistema de recuperación de la energía de red del MOVIDRIVE[®] MDR60B/61B y para alcanzar las propiedades del producto y las características de rendimiento. SEW-EURODRIVE no asume ninguna responsabilidad por los daños personales, materiales o patrimoniales que se produzcan por no tener en cuenta la documentación. La responsabilidad por deficiencias materiales queda excluida en tales casos.

7.5 Derechos de autor

© 2010 - SEW-EURODRIVE. Todos los derechos reservados.

Queda prohibida la reproducción, copia, distribución o cualquier otro uso completo o parcial de este documento.

7.6 Nombres de productos y marcas

Las marcas y nombres de productos mencionados en esta documentación son marcas comerciales o marcas comerciales registradas de sus respectivos propietarios.

8 Notas de seguridad

Las siguientes notas de seguridad fundamentales sirven para prevenir daños personales y materiales. El usuario debe garantizar que se tengan en cuenta y se respeten las notas de seguridad fundamentales. Cerciórese de que los responsables de la instalación o de funcionamiento, así como las personas que trabajan en el equipo bajo su propia responsabilidad han leído y entendido completamente la documentación. En caso de dudas o necesidad de más información, diríjase a SEW-EURODRIVE.

8.1 Información general

Nunca instale o ponga en funcionamiento productos dañados. Informe inmediatamente de la existencia de desperfectos a la empresa transportista.

Durante el funcionamiento y correspondiendo a su tipo de protección, los sistemas de recuperación de la energía de red pueden presentar partes sometidas a tensión, sin protección y en algunos casos móviles e incluso superficies con altas temperaturas.

Pueden ocasionarse lesiones graves o daños en las instalaciones como consecuencia de la extracción no autorizada de la cubierta, uso inadecuado o instalación o manejo incorrecto.

Encontrará información adicional en la documentación.

8.2 Grupo de destino

Todos los trabajos relacionados con la instalación, puesta en marcha, subsanación de fallos y mantenimiento deben ser realizados **por electricistas especializados** (se han de respetar IEC 60364 o CENELEC HD 384 o DIN VDE 0100 e IEC 60664 o DIN VDE 0110 así como la normativa nacional de prevención de accidentes).

En lo concerniente a estas normas básicas de seguridad, se considera como electricista especializado a todas aquellas personas familiarizadas con la instalación, montaje, puesta en marcha y funcionamiento del producto y que además cuenten con la cualificación adecuada a la tarea que realicen.

Todos los trabajos en los demás ámbitos de transporte, almacenamiento, funcionamiento y tratamiento de residuos deben ser efectuados por personas instruidas de una manera adecuada.

Notas de seguridad

Uso indicado

8.3 Uso indicado

Los sistemas de recuperación de la energía de red se han concebido como componentes para su instalación en sistemas eléctricos o máquinas.

En el caso de instalación en máquinas, queda terminantemente prohibido poner en marcha el sistema de recuperación de energía de red (es decir, iniciar el funcionamiento conforme a lo prescrito) hasta haber constatado que las máquinas cumplen la directiva sobre máquinas 2006/42/CE; debe tenerse en cuenta EN 60204.

Se autoriza la puesta en marcha (concretamente el inicio del funcionamiento conforme a lo prescrito) únicamente cuando se cumpla la directiva de Compatibilidad Electromagnética (2004/108/CE).

Los sistemas de recuperación de la energía de red cumplen los requisitos de la directiva de baja tensión 2006/95/CE. Se aplican las normas armonizadas de la serie EN 61800-5-1/DIN VDE T105 en combinación con EN 60439-1/VDE 0660 parte 500 y EN 60146/VDE 0558 a los variadores vectoriales.

Los datos técnicos y las indicaciones para las condiciones de conexión los encontrará en la placa de características y en la documentación.

8.4 Transporte, almacenamiento

Deben respetarse las indicaciones para transporte, almacenamiento y manipulación adecuada. Deben cumplirse las condiciones climáticas según el capítulo "Datos técnicos generales".

8.5 Instalación

La instalación y refrigeración de los aparatos ha de realizarse de acuerdo con la normativa incluida en la documentación correspondiente.

Los sistemas de recuperación de la energía de red deberán protegerse de esfuerzos no autorizados. Deberá prestarse especial cuidado para no deformar ningún componente y/o modificar las distancias de aislamiento durante el transporte y el manejo. Debido a esto se recomienda evitar el contacto con los componentes electrónicos y contactos.

Los variadores vectoriales contienen componentes sensibles a descargas electrostáticas que pueden resultar fácilmente dañados a consecuencia del manejo indebido. Los componentes eléctricos no deben ser dañados mecánicamente o destruidos (jen ocasiones puede suponer un peligro para la salud!).

A menos que no se especifique expresamente lo contrario, queda prohibido:

- · la aplicación en áreas con atmósfera potencialmente explosiva
- la aplicación en entornos expuestos a aceites, ácidos, gases, vapores, polvo, irradiaciones nocivas, etc.
- la utilización en aplicaciones no estacionarias en las que se produzcan cargas mecánicas instantáneas o vibrantes que excedan el requisito de la norma EN 61800-5-1.

8.6 Conexión eléctrica

Durante los trabajos en variadores vectoriales sometidos a tensión debe observarse la normativa nacional de prevención de accidentes en vigor (p. ej. BGV A3).

Deberá llevarse a cabo la instalación eléctrica siguiendo la normativa adecuada (p. ej. secciones de cable, protección, conexión del conductor de puesta a tierra). Indicaciones adicionales están incluidas en la documentación.

Puede encontrar las instrucciones para la instalación conforme a las medidas de compatibilidad electromagnética (CEM) tales como apantallado, puesta a tierra, disposición de filtros e instalación del cableado, en la documentación de los variadores vectoriales. Dichas instrucciones han de ser tenidas en cuenta asimismo en el caso de variadores vectoriales que cuenten con el distintivo CE. El cumplimiento de los valores límite requeridos por la regulación CEM es responsabilidad del fabricante de la instalación o de la máquina.

Asegúrese de que las medidas preventivas y los instrumentos de protección se correspondan con la normativa vigente (p. ej. EN 60204 o EN 61800-5-1).

Medida de protección necesaria: Conexión a tierra del aparato.

MOVIDRIVE[®] B, tamaño 7 contiene adicionalmente un LED de visualización debajo de la cubierta frontal inferior. Si el LED de visualización está iluminado, esto indica que hay una tensión de circuito intermedio. No se deben tocar las conexiones de potencia. Con independencia de lo que muestre el LED indicador, antes de tocar las conexiones de potencia, se debe comprobar si existe tensión.

8.7 Desconexión segura

El aparato satisface todos los requisitos sobre la desconexión segura de conexiones de potencia y conexiones electrónicas de acuerdo con la norma EN 61800-5-1. A fin de garantizar esta desconexión todos los circuitos de corriente conectados deberán cumplir también los requisitos para la desconexión segura.

Notas de seguridad

Funcionamiento

8.8 Funcionamiento

Todas aquellas instalaciones en las que se hayan integrado recuperadores de corriente deberán equiparse con dispositivos de vigilancia y protección adicionales conforme a la normativa de seguridad aplicable a cada caso, p. ej. ley sobre medios técnicos de trabajo, normas de prevención de accidentes, etc. Modificaciones de los variadores vectoriales con el software de manejo están permitidas.

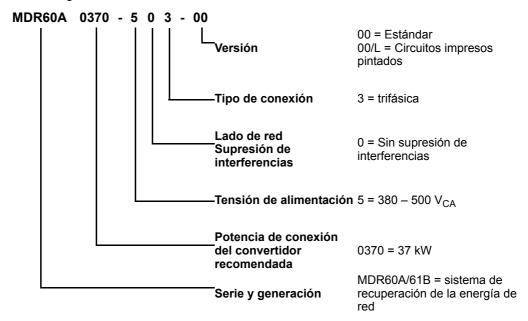
Inmediatamente tras desconectar los variadores vectoriales de la tensión de alimentación, evite entrar en contacto con las piezas sometidas a tensión y con las conexiones de potencia debido a que los condensadores pueden encontrarse cargados. En este caso deben tenerse en cuenta las correspondientes etiquetas de instrucciones del variador vectorial.

Durante el funcionamiento deben mantenerse cerradas todas las cubiertas y puertas.

Aunque el LED de funcionamiento y los demás elementos de indicación estén apagados (p. ej. el LED indicador del tamaño 7), esto significa que la unidad esté desconectada de la red y sin corriente.

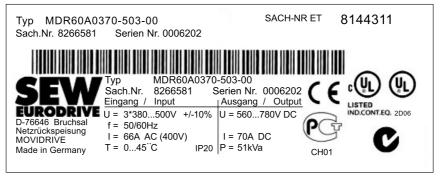
Con independencia de lo que muestre el LED indicador, antes de tocar las conexiones de potencia, se debe comprobar si existe tensión.

Las funciones de seguridad internas de la unidad o el bloqueo mecánico pueden provocar la parada del motor, La subsanación de la causa del fallo o el reajuste pueden ocasionar el reencendido automático del motor. Si por motivos de seguridad esto no estuviera permitido con la unidad activada, desconéctela del sistema de alimentación antes de iniciar la subsanación del fallo.


9 Estructura del equipo

9.1 Designación de modelo, placa de características y contenido de suministro

9.1.1 Designación de modelo

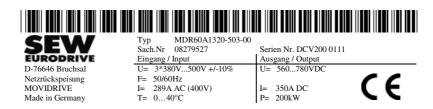

El siguiente diagrama muestra la designación de modelo del sistema de recuperación de la energía de red MOVIDRIVE® MDR60A/61B:

Designación de modelo, placa de características y contenido de suministro

Ejemplo: placa de características tamaños 2 - 4 9.1.2

En MDR60A tamaños 2 – 4, la placa de características está colocada en la parte frontal de la unidad.

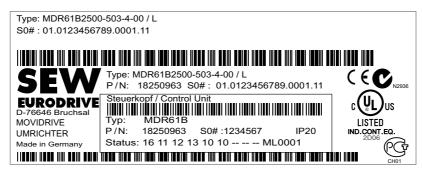
1877000715



Estructura del equipo

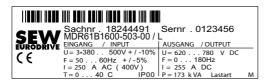
Designación de modelo, placa de características y contenido de suministro

9.1.3 Ejemplo: placa de características tamaño 6


En MDR60A tamaño 6, la placa de características está colocada en la parte frontal de la unidad.

4013223819

9.1.4 Ejemplo: placa de características completa tamaño 7


En MDR61B tamaño 7, la placa de características completa está colocada en la cubierta frontal superior.

4074039819

9.1.5 Ejemplo: placa de características de la unidad de potencia tamaño 7

En MDR61B tamaño 7, la placa de características de la unidad de potencia está colocada en la parte superior izquierda de la unidad.

4092382091

9.2 Volumen de suministro

9.2.1 Tamaño 2

- 1 ángulo de sujeción
- · 2 placas aislantes
- 2 estribos de sujeción
- 2 tornillos alomados
- 3 sujetacables
- 3 bornas enchufables

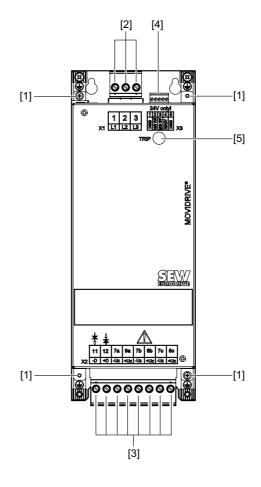
9.2.2 Tamaño 3

• ningún volumen de suministro adicional disponible.

9.2.3 Tamaño 4

- 2 tapas
- 2 cubiertas
- · 4 tornillos de gollete
- 8 tornillos alomados
- 1 cubierta
- 1 deflector
- 4 tornillos alomados

9.2.4 Tamaño 6


- 5 placas de Pertinax para aislar las bornas de potencia
- 5 caperuzas de Pertinax para cubrir las bornas de potencia

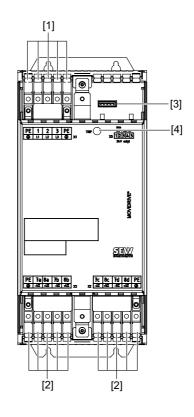
9.2.5 Tamaño 7

- 1 chapa de apantallado
- 2 bridas de contacto
- 3 tornillos alomados

9.3 Tamaño 2

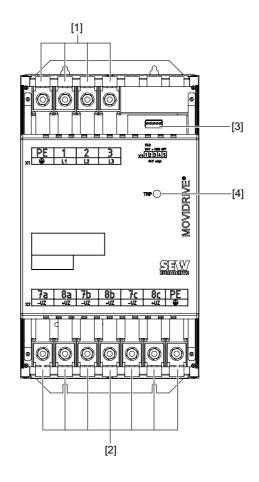
MOVIDRIVE® MDR60A0150-503-00(/L)

3908481803


- [1] Conexión de puesta a tierra
- [2] X1: Conexión a red 1/L1, 2/L2, 3/L3
- [3] X2: Conexión del circuito intermedio
- [4] X3: Regleta de bornas de señal para entradas binarias y salidas binarias
- [5] LED de estado

9.4 Tamaño 3

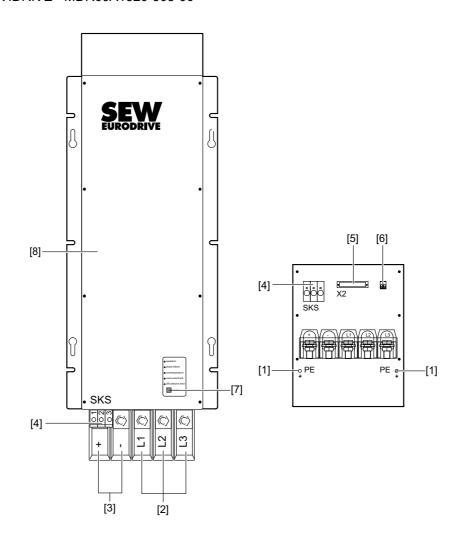
MOVIDRIVE® MDR60A0370-503-00(/L)


3908484619

- [1] X1: Conexión a red 1/L1, 2/L2, 3/L3 y de puesta a tierra
- [2] X2: Conexión del circuito intermedio y de puesta a tierra
- [3] X3: Regleta de bornas de señal para entradas binarias y salidas binarias
- [4] LED de estado

9.5 Tamaño 4

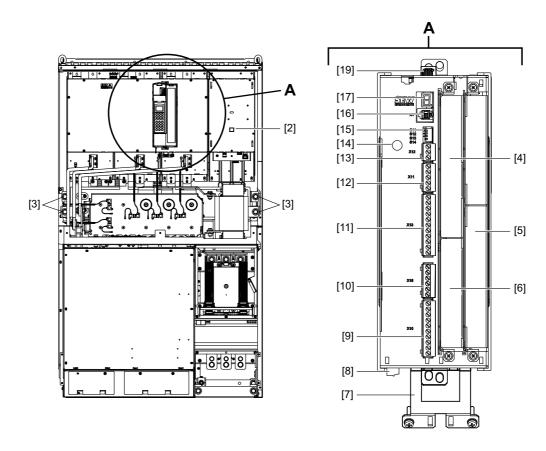
MOVIDRIVE® MDR60A0750-503-00(/L)



- [1] X1: Conexión a red 1/L1, 2/L2, 3/L3 y de puesta a tierra
- [2] X2: Conexión del circuito intermedio y de puesta a tierra
- [3] X3: Regleta de bornas de señal para entradas binarias y salidas binarias
- [4] LED de estado

9.6 Tamaño 6

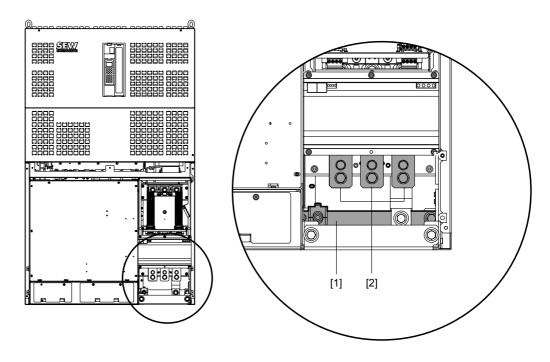
MOVIDRIVE® MDR60A1320-503-00



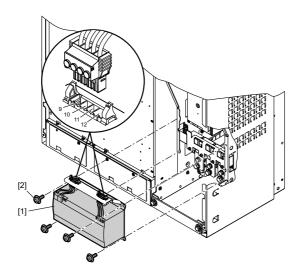
- [1] Conexión de puesta a tierra
- [2] Conexión a red 1/L1, 2/L2, 3/L3
- [3] Conexión al circuito intermedio -U_Z +U_Z
- [4] Regleta de bornas SKS (¡no cablear!)
- [5] Regleta de bornas de señal para entradas binarias y salidas binarias
- [6] Entrada inhibidora A1/A2
- [7] LED de estado
- [8] Conmutador de selección de tensión (interno)

9.7 Tamaño 7

MOVIDRIVE® MDR61B1600-503-00/L y MDR2500-503-00/L



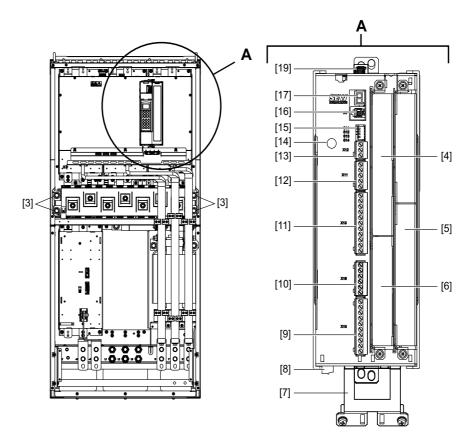
- [2] Indicación de la tensión del circuito intermedio
- [3] Conexión al circuito intermedio -U_Z +U_Z
- [4] Zócalo del bus de campo (no asignable)
- [5] Zócalo de expansión (no asignable)
- [6] Zócalo del encoder (no asignable)
- [7] Borna de apantallado para cables de señal
- [8] X17: Regleta de bornas de señal con contactos de seguridad para la parada segura
- [9] X10: Regleta de bornas de señal para salidas binarias
- [10] X16: Regleta de bornas de señal para salidas binarias
- [11] X13: Regleta de bornas de señal para entradas binarias e interfaz RS485
- [12] Sin función
- [13] X12: Regleta de bornas de señal para bus de sistema (SBus)
- [14] Tornillo de toma de tierra M4 × 14
- [15] Interruptores DIP S11 ... S13 (S14 sin función)
- [16] XT: zócalo para la consola de programación DBG60B o para la interfaz en serie UWS21B
- [17] Display de 7 segmentos
- [19] Tarjeta de memoria



9.7.1 Conexiones de potencia del MOVIDRIVE® MDR61B

- [1] Carril de puesta a tierra (grosor = 10 mm)
- [2] X1: Conexión a red 1/L1, 2/L2, 3/L3

9.7.2 Fuente de alimentación conmutada MOVIDRIVE® MDR61B



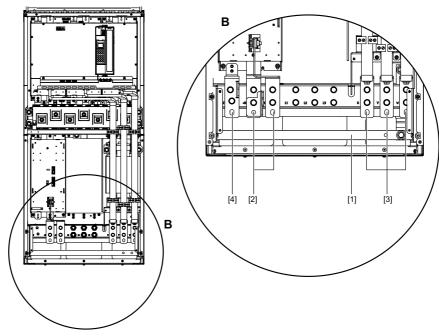
- [1] Fuente de alimentación CC
- [2] Tornillo

9.8 Convertidor de corriente a motor MOVIDRIVE® MDX62B tamaño 7

9.8.1 Equipo de control

MDX62B-503 (unidades de 400/500 V_{CA}): 1600 / 2000 / 2500

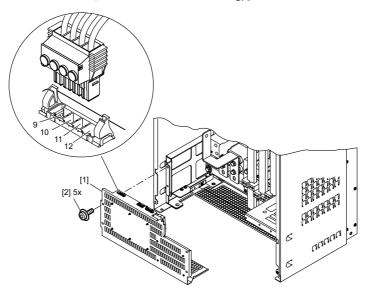
- [3] Conexión al circuito intermedio -U_Z +U_Z
- [4] Zócalo para bus de campo
- [5] Zócalo de conexión para ampliaciones
- [6] Zócalo para encoder
- [7] Borna de apantallado para cables de señal
- [8] X17: Regleta de bornas de señal con contactos de seguridad para la parada segura
- [9] X10: Regleta de bornas de señal para salidas binarias y entrada TF/TH
- [10] X16: Regleta de bornas de señal para entradas binarias y salidas binarias
- [11] X13: Regleta de bornas de señal para entradas binarias e interface RS485
- [12] X11: Regleta de bornas de señal para entrada de consigna Al1 y tensión de referencia de 10 V
- [13] X12: Regleta de bornas de señal para bus de sistema (SBus)
- [14] Tornillo de toma a tierra M4 × 14
- [15] Interruptores DIP S11 ... S14
- [16] XT: Zócalo para la consola de programación DBG60B o para la interfaz en serie UWS21B
- [17] Display de 7 segmentos
- [19] Tarjeta de memoria



Estructura del equipo

9.8.2 Etapa de potencia

MDX62B-503 (unidades de -400/500 V_{CA}): 1600 / 2000 / 2500



2077053963

- [1] Carril de puesta a tierra (grosor = 10 mm)
- [2] X3: Conexión de la resistencia de frenado 8/+R, 9/-R
- [3] X2: Conexión de motor 4/U, 5/V, 6/W
- [4] -U_Z: Sólo con accesorio adaptador del circuito intermedio

9.8.3 Fuente de alimentación CC

MDX62B-503 (unidades de 400/500 V_{CA}): 1600 / 2000 / 2500

2306976267

- [1] Fuente de alimentación CC
- [2] Tornillo

Indicaciones de instalación

10 Instalación (MDR60A0150/0370/0750 y MDR61B1600/2500)

En este capítulo se describe la instalación de los siguientes sistemas de recuperación de energía de red y convertidores de corriente de motor:

- MOVIDRIVE[®] MDR60A0150-503-00
- MOVIDRIVE[®] MDR60A0370-503-00
- MOVIDRIVE[®] MDR60A0750-503-00
- MOVIDRIVE® MDR61B1600-503-00/L
- MOVIDRIVE[®] MDR61B2500-503-00/L
- MOVIDRIVE[®] MDX62B1600-503-x-0T/L
- MOVIDRIVE[®] MDX62B2000-503-x-0T/L
- MOVIDRIVE[®] MDX62B2500-503-x-0T/L

NOTA

Podrá encontrar más información sobre la instalación del convertidor de corriente de motor MOVIDRIVE® MDX62B en las instrucciones de funcionamiento y en el manual de sistema "MOVIDRIVE® B".

10.1 Indicaciones de instalación

- · ¡Aténgase a las indicaciones de seguridad cuando realice la instalación!
- A fin de proteger el sistema de recuperación de energía de red es necesario evaluar el mensaje de disposición para el funcionamiento (→ cap. "Puesta en marcha").
- ¡Para el funcionamiento con el MOVIDRIVE® MDR60A/61B no está permitido conectar las conexiones de red de los convertidores MOVIDRIVE® MDX60B/61B individuales a la red! (a excepción del MOVIDRIVE® MDR60A0150-503-00 instalado como módulo de freno)

▲ ¡ADVERTENCIA!

Durante el funcionamiento, la temperatura del radiador puede subir a más de 70 °C. Peligro de quemaduras y de incendio.

- Seleccione un lugar de instalación adecuado.
- · No toque el radiador.

10.1.1 Pares de apriete

 Utilice únicamente elementos de conexión originales. Para los variadores vectoriales MOVIDRIVE[®] observe los pares de apriete permitidos de las bornas de potencia.

10.1.2 Espacio mínimo libre y posición de montaje

- Observe los radios de flexión mínimos según EN 61800-5-1.
- Disponga los aparatos siempre en posición **vertical**. Queda prohibido montar las unidades ni horizontal o transversalmente ni invertidas.
- Asegúrese de que los aparatos no se encuentran en la zona de salida de aire caliente de otros aparatos.
- Obsérvense los siguientes espacios libres:
 - MDR60A0150/0370: como mínimo 100 mm (3,9 pulg.) por debajo y por encima.
 - MDR60A0750 y MDR61B1600/2500: como mínimo 100 mm (3,9 pulg.) por encima. En el caso de componentes sensibles a la temperatura, como contactores o fusibles, como mínimo 300 mm (11,8 pulg.).
 - No se requiere dejar un espacio libre lateral. Se pueden colocar las unidades una junto a otra.

10.1.3 Bandejas de cables separadas

 Coloque los cables de potencia y las conducciones electrónicas en bandejas de cables separadas.

10.1.4 Fusibles e interruptor diferencial

- Instale los fusibles al comienzo de la línea de alimentación de red antes del contactor de red (consulte el esquema de conexiones del equipo básico, etapa de potencia y freno).
- SEW-EURODRIVE recomienda renunciar al empleo de interruptores diferenciales en instalaciones con convertidores de frecuencia, puesto que un interruptor diferencial reduce la disponibilidad de la instalación.

▲ ¡ADVERTENCIA!

Se ha utilizado un tipo erróneo de interruptor de corriente de defecto.

Lesiones graves o fatales.

La unidad puede causar una corriente continua en el conductor de puesta a tierra. Si utiliza un interruptor de corriente de defecto (FI) como protección en caso de contacto directo o indirecto, en el lado de la alimentación de corriente de la unidad sólo puede utilizar un interruptor de corriente de defecto (FI) del tipo B.

10.1.5 Polaridad de las conexiones de circuito intermedio

Preste mucha atención a la polaridad correcta de las conexiones del circuito intermedio. ¡La polarización errónea de las conexiones del circuito intermedio daña los aparatos conectados! La conexión del circuito intermedio conduce tensión continua muy alta (aprox. 900 V). Trence las líneas del circuito intermedio y tiéndalas únicamente dentro del armario de conexiones.

10.1.6 Conectar el convertidor al sistema de recuperación de la energía de red MOVIDRIVE® MDR60A/61B

 Si se utilizan cables para unir el convertidor y el sistema de recuperación de energía de red, los convertidores deberán conectarse en estrella al sistema de recuperación de energía de red. Tenga para ello en cuenta las indicaciones de instalación incluidas en el manual de funcionamiento del convertidor.

1

Instalación (MDR60A0150/0370/0750 y MDR61B1600/2500)

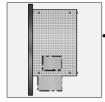
Indicaciones de instalación

10.1.7 Montaje permitido de las resistencias de frenado

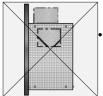
▲ ¡ADVERTENCIA!

Si se lleva a cabo un montaje no permitido, puede producirse una acumulación de calor en la resistencia de frenado debido a la convección reducida. Si se activa el contacto de temperatura o se sobrecalienta la resistencia de frenado, es posible que la instalación se detenga.

Tenga en cuenta las siguientes distancias mínimas:

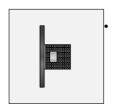

- aprox. 200 mm de componentes y paredes contiguos
- aprox. 300 mm de componentes/techos ubicados encima

Resistencias de rejilla de acero


Al montar las resistencias de rejilla de acero, tenga en cuenta las siguientes especificaciones:

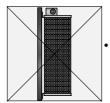
Permitido: Montaje en superficies horizontales.

Permitido: Montaje en superficies verticales con las bornas apuntando hacia abajo si hay una chapa perforada en la parte superior.


No permitido: Montaje en superficies verticales con las bornas hacia arriba, hacia la derecha o la izquierda. (En caso necesario, las bornas de conexión también se pueden colocar dentro de la rejilla de acero. En este caso tenga también en cuenta la posición de las bornas de conexión.)

Resistencias de alambre

Al montar las resistencias de alambre, tenga en cuenta las siguientes especificaciones:


Permitido: Montaje en superficies horizontales.

Permitido: Montaje en superficies verticales si hay una chapa perforada en la parte superior o bornas de conexión en la parte inferior.

No permitido: Montaje en superficies verticales si hay bornas de conexión en la parte superior.

10.1.8 Conexión de las resistencias de frenado

- Utilice dos cables trenzados adyacentes o un cable de potencia apantallado de 2 conductores. Sección de cable según la corriente de disparo I_F de F16. La tensión nominal del cable debe ascender como mínimo a U₀/U = 300 V / 500 V (conforme a DIN VDE 0298).
- Proteja la resistencia de frenado (excepto BW90-P52B) con un relé bimetálico
 (→ Esquema de conexiones de equipo básico, etapa de potencia y freno). Ajuste la
 corriente de disparo en función de los datos técnicos de la resistencia de
 frenado. SEW-EURODRIVE recomienda usar relés de sobrecorriente de la clase de
 disparo 10 ó 10A según EN 60947-4-1.
- En las resistencias de frenado de las series BW...- T / BW...-P se puede conectar, como alternativa a un relé bimetálico, el interruptor térmico / relé de sobrecorriente integrado con un cable apantallado de 2 conductores.
- Las resistencia de frenado de construcción plana tienen una protección de sobrecarga térmica interna (fusible no reemplazable). Monte las resistencias de frenado de construcción plana con la correspondiente protección contra contacto accidental.

10.1.9 Funcionamiento de las resistencias de frenado

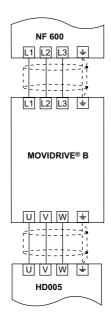
• En funcionamiento normal, las líneas de alimentación a las resistencias de frenado llevan alta tensión continua de conmutación.

▲ ¡ADVERTENCIA!

Las superficies de las resistencias de frenado cargadas con P_N alcanzan temperaturas elevadas.

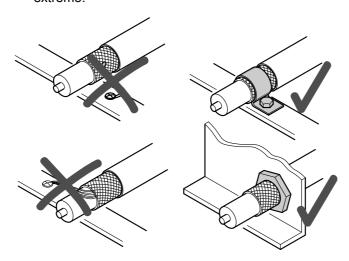
Peligro de quemaduras y de incendio.

- Seleccione un lugar de instalación adecuado. Generalmente, las resistencias de frenado se montan encima del armario de conexiones.
- · No tocar la resistencia de frenado.



Indicaciones de instalación

10.1.10 Instalación conforme a las medidas de compatibilidad electromagnética


 Todos los cables salvo el de alimentación de red deben estar apantallados. Como alternativa al cable apantallado, para que el cable de motor alcance los valores límite de supresión de interferencias se puede utilizar la opción HD.. (anillo de ferrita).

2394134795

Líneas apantalladas

- Si se utilizan cables del motor apantallados, p. ej. cables del motor prefabricados de SEW-EURODRIVE, tiene que colocar los conductores no apantallados entre la pantalla y la borna de conexión del variador lo más cortos posible.
- Coloque el apantallamiento de la manera más directa con contacto amplio a masa en ambos lados. A fin de evitar bucles de corriente, es posible conectar a tierra un extremo del apantallado a través de un condensador antiparasitario (220 nF / 50 V). En el caso de una línea de apantallado doble, conecte a tierra el apantallado exterior en el lado del variador y el apantallado interior en el otro extremo.

1804841739

Conexión correcta de apantallado con abrazadera de metal (borna de apantallado) o prensaestopas

- Para el apantallado de las líneas puede utilizar asimismo canales de chapa conectados a tierra o tubos de metal. Tienda los cables de potencia y de señal por separado.
- Conecte a tierra el variador y todos los equipos adicionales de acuerdo con las exigencias de alta frecuencia (superficie de contacto metálica amplia entre la carcasa del equipo y la tierra, por ejemplo, placa de montaje del armarios de conexiones sin pintar).

NOTA

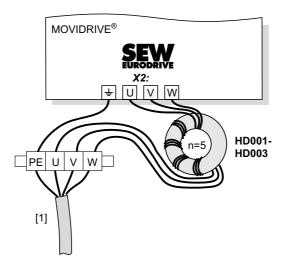
- MOVIDRIVE[®] B es un producto de disponibilidad restringida de acuerdo con la norma EN 61800-3. Este producto puede causar interferencias CEM. En este caso puede que el usuario deba adoptar las medidas adecuadas.
- En la documentación "CEM en la tecnología de accionamiento" de SEW-EURODRIVE encontrará información detallada acerca de la instalación conforme a CEM.

Filtro de entrada NF..

- Con la opción de filtro de red NF.. se puede cumplir en el sistema de recuperación de energía de red MOVIDRIVE[®] MDR60A/61B tamaño 2, 3 y 7 la clase de valor límite C2.
- No debe conmutarse la línea entre filtro de red y sistema de recuperación de la energía de red MOVIDRIVE[®] MDR60A/61B.
- Monte el filtro de red cerca del sistema de recuperación de energía de red pero fuera del espacio libre mínimo necesario para la refrigeración.
- Limite el cable entre el filtro de red y el sistema de recuperación de energía de red a la longitud absolutamente necesaria sin que supere un máximo de 400 mm.
 Será suficiente emplear cables trenzados y sin apantallar. Como línea de alimentación de red utilice asimismo cables no apantallados.

Categoría de emisión de interferencias El mantenimiento de la categoría C2 conforme a EN 61800-3 se comprobó en un sistema de accionamiento típico de CE. SEW-EURODRIVE le proporcionará si así lo desea informaciones detalladas al respecto.

¡ATENCIÓN!


En un entorno residencial, este producto puede producir emisiones de alta frecuencia que podrían requerir la toma de ciertas medidas.

Instalación (MDR60A0150/0370/0750 y MDR61B1600/2500)

Indicaciones de instalación

Anillo de ferrita HD...

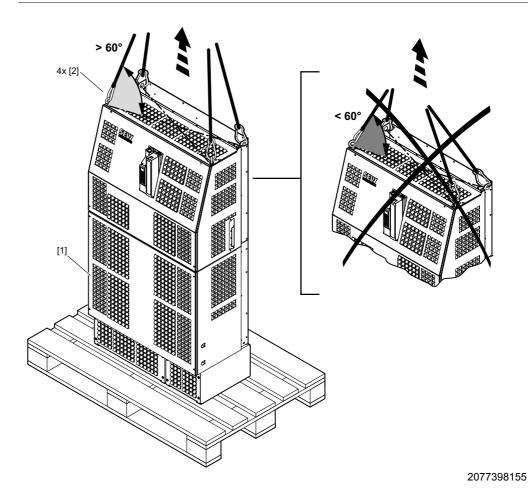
- Monte el anillo de ferrita cerca del variador pero fuera del espacio libre mínimo necesario para la refrigeración.
- Para HD001 ... HD003: Conduzca las tres fases (U, V, W) del cable del motor [1] conjuntamente a través del anillo de ferrita. Con el fin de alcanzar un efecto de filtración superior, no conduzca el cable de puesta a tierra a través del anillo de ferrita.

1804844811

Conexión del anillo de ferrita HD001 – HD003

[1] Cable de motor

10.1.11 Indicaciones de montaje para el tamaño 7


Para su transporte, las unidades MOVIDRIVE $^{\$}$ del tamaño 7 (1600 – 2500) incluyen cuatro cáncamos fijos [2]. Al montarlas se deben utilizar exclusivamente los cuatro cáncamos [2].

▲ ¡ADVERTENCIA!

Carga suspendida.

Peligro de muerte por la caída de la carga.

- · No permanezca debajo de la carga.
- Asegure el área de peligro.
- Utilizar siempre las 4 argollas.
- Alinear las argollas según la dirección de tracción.

- [1] Cubierta frontal fijamente montada
- [2] 4 cáncamos

1

Instalación (MDR60A0150/0370/0750 y MDR61B1600/2500)

Instalación conforme a UL

10.2 Instalación conforme a UL

10.2.1 Bornas de potencia

MOVIDRIVE[®] MDR60A0150 – 0750 y MOVIDRIVE[®] MDR61B1600 – 2500: Utilice cables de cobre con un valor nominal de temperatura de 60/75 °C.
 MOVIDRIVE[®] MDX62B1600 – 2500: Utilice cables de cobre con un valor nominal de temperatura de 75 °C.

Los pares de apriete permitidos de las bornas son:

MOVIDRIVE®	Tamaño	in-lbs	Nm
MDR60A/61B MDX62B	2	16	1.8
	3	31	3.5
	4	120	14
	7	620	70

10.2.2 Resistencia a corriente de cortocircuito

- Se puede utilizar en circuitos con una corriente alterna de cortocircuito máxima de 200000 A:
 - MOVIDRIVE[®] MDR60A0150 0750 y MOVIDRIVE[®] MDR61B1600 2500 si están instalados con el variador vectorial MOVIDRIVE[®] correspondiente.
 La tensión máxima está limitada a 500 V.
 - MOVIDRIVE[®] MDX62B1600 2500.
 La tensión máxima está limitada a 500 V.

10.2.3 Protección de circuitos derivados

La protección contra cortocircuito con semiconductor integrada no sustituye a la protección de circuitos derivados. Proteja los circuitos derivados según el National Electrical Code de EE. UU. y la normativa local correspondiente.

Las tablas siguientes muestran las protecciones máximas permitidas.

MOVIDRIVE® MDR60A/61B

MOVIDRIVE® MDR60A/61B	Máx. corriente alterna de cortocircuito de red ¹⁾	Máx. tensión de red	Máx. fusibles admisibles
0150	200 000 A _{CA}	500 V _{CA}	50 A / 600 V _{CA}
0370	200 000 A _{CA}	500 V _{CA}	100 A / 600 V _{CA}
0750	200 000 A _{CA}	500 V _{CA}	175 A / 600 V _{CA}
1600	200 000 A _{CA}	500 V _{CA}	400 A / 600 V _{CA}
2500	200 000 A _{CA}	500 V _{CA}	600 A / 600 V _{CA}

Si el sistema de recuperación de la energía de red MOVIDRIVE[®] MDR60A/61B está instalado con el variador vectorial MOVIDRIVE[®] correspondiente.

MOVIDRIVE® MDX62B

MOVIDRIVE® MDX62B	Máx. corriente alterna de cortocircuito de red	Máx. tensión de red ¹⁾	Máx. fusibles admisibles
1600	200 000 A _{CA}	500 V _{CA}	400 A / 600 V _{CA}
2000	200 000 A _{CA}	500 V _{CA}	500 A / 600 V _{CA}
2500	200 000 A _{CA}	500 V _{CA}	600 A / 600 V _{CA}

¹⁾ Es válido para el lado de red del sistema de recuperación de energía de red MOVIDRIVE® MDR61B, si se ha instalado en combinación con el convertidor de corriente de motor MOVIDRIVE® MDX62B.

Instalación (MDR60A0150/0370/0750 y MDR61B1600/2500)

10.2.4 Protección contra sobrecarga del motor

MOVIDRIVE[®] MDX62B1600 – 2500: Las unidades están equipadas con una protección contra sobrecarga para el motor que se dispara a partir del 150 % de corriente nominal del motor.

10.2.5 Temperatura ambiente

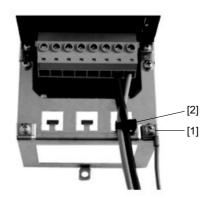
Las unidades son aptas para utilizar a temperaturas ambientales de 40 °C y máx. 60 °C con corriente limitada de salida.

 $\rm MOVIDRIVE^{\circledR}$ MDR60A0150 - 0750: Para determinar la corriente de salida nominal a temperaturas por encima de 40 °C, la corriente de salida debe reducirse un 3 % por cada °C entre 40 °C y 60 °C.

MOVIDRIVE® MDR61B1600 - 2500 y MOVIDRIVE® MDX62B1600 - 2500: Para determinar la corriente nominal de salida a temperaturas superiores a 40 °C, la corriente de salida se debe reducir 2,5 % por cada °C de entre 40 °C y 50 °C, y en 3 % por cada °C de entre 50 °C y 60 °C.

INDICACIONES

- Como fuente de alimentación externa de 24 V_{CC} utilice únicamente aparatos comprobados con tensión limitada de salida (U_{máx} = 30 V_{CC}) y corriente limitada de salida (I_{máx} = 8 A).
- La certificación UL no es válida para el funcionamiento en redes de alimentación con puntos neutros sin conectar a tierra (redes IT).

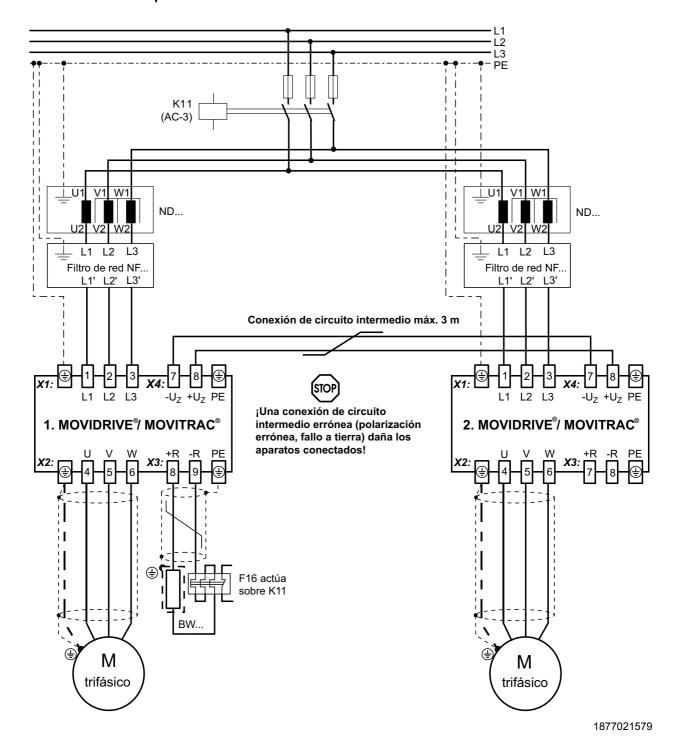


10.3 Descarga de tracción

10.3.1 Descarga de tracción para MOVIDRIVE MDR60A0150-503 tamaño 2

En los MOVIDRIVE® MDR60A0150-503 tamaño 2 se suministra de serie una descarga de tracción. Monte esta descarga de tracción junto con los tornillos de sujeción del aparato.

[1] Descarga de tracción

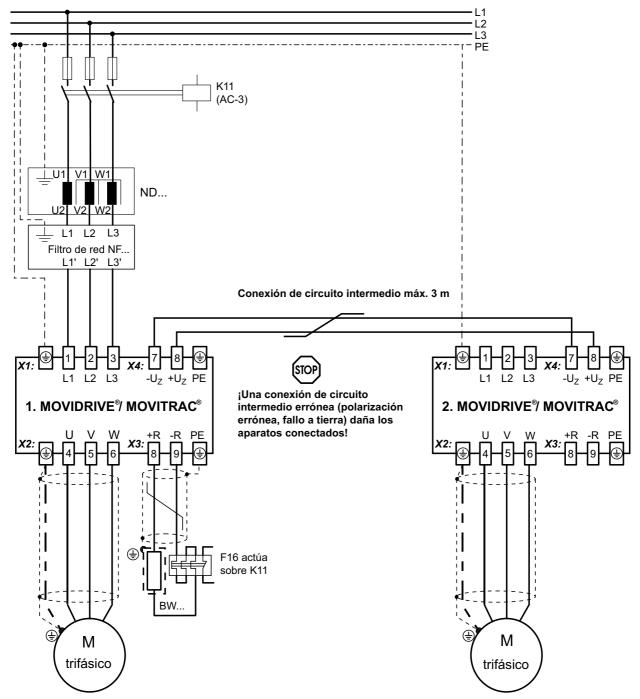

[2] Conexión a tierra

10.4 Esquemas de conexiones

Esquemas de conexiones

10.4.1 Conexión de circuito intermedio sin sistema de recuperación de la energía de red MDR60A/61B en conexión tipo A

NOTA

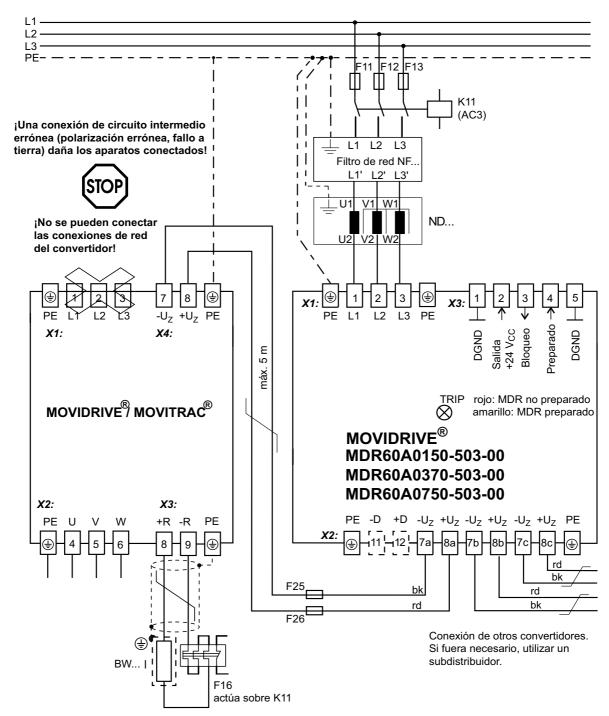

i

• El MOVIDRIVE® MDX61B1600/2000/2500 tamaño 7 se debe instalar sin inductancia de red (ND..).

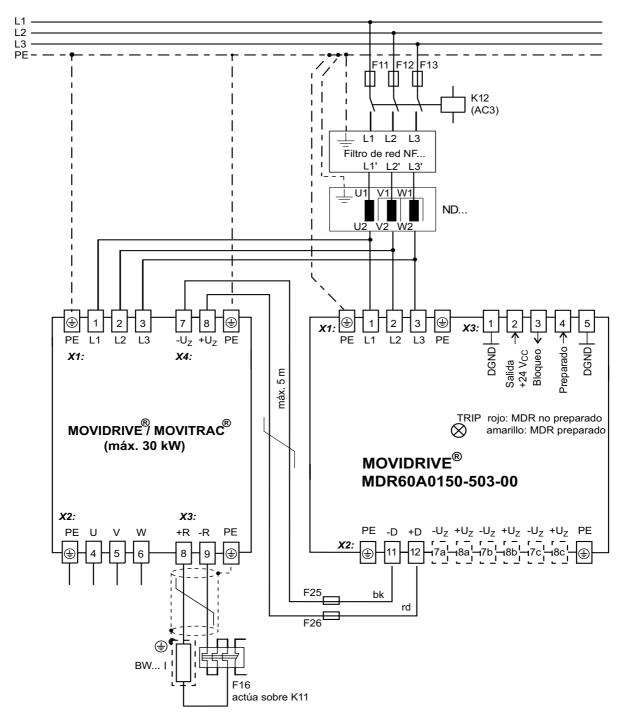
10.4.2 Conexión de circuito intermedio sin sistema de recuperación de la energía de red MDR60A/61B en conexión tipo B

1877024779

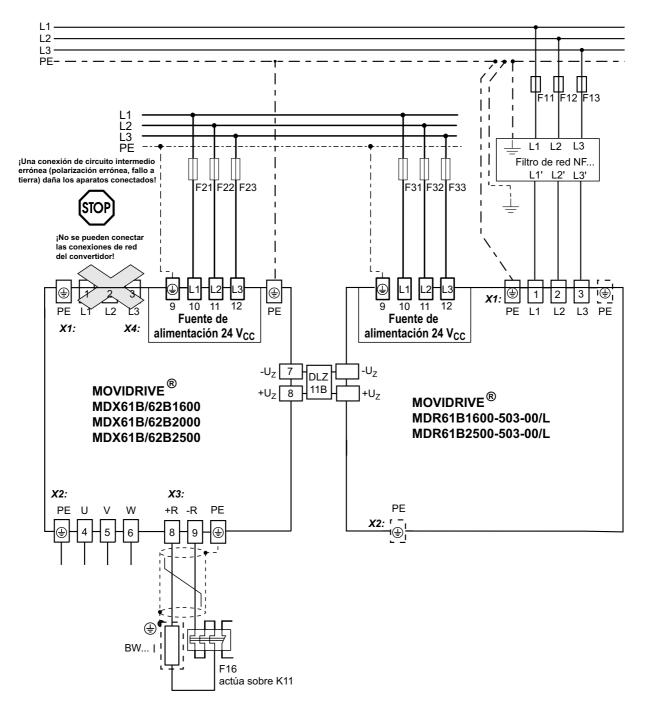
NOTA


- El MOVIDRIVE® MDX61B1600/2000/2500 tamaño 7 se debe instalar sin inductancia de red (ND..).
- El convertidor de corriente de motor MDX62B1600 sólo se debe utilizar con MOVIDRIVE[®] MDX61B1600/2000, tamaño 7, en el tipo de conexión B. Consulte el capítulo "Tipo de conexión B" (→ pág. 60).

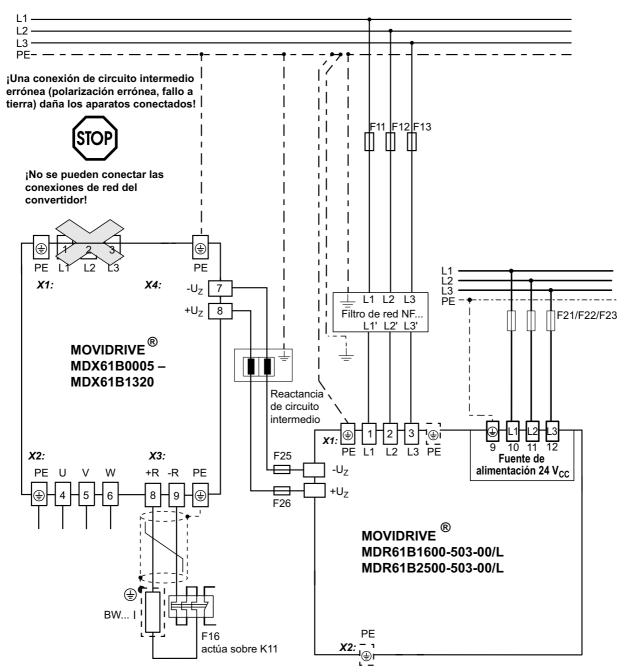
Esquemas de conexiones

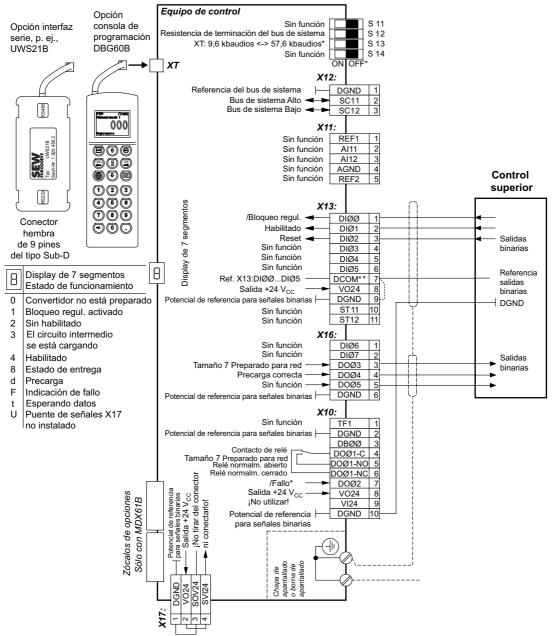

10.4.3 Conexión de circuito intermedio con sistema de recuperación de la energía de red MDR60A0150/0370/0750

10.4.4 Conexión de circuito intermedio con sistema de recuperación de la energía de red MDR60A0150 en la función de módulo de frenado



10.4.5 Conexión de circuito intermedio con sistema de recuperación de la energía de red MDR61B1600/2500


En combinación con MOVIDRIVE® MDX61B/62B1600 – 2500 (tamaño 7)


En combinación con MOVIDRIVE® MDX61B0005 – 1320 (tamaño 0 – 6)

Instalación (MDR60A0150/0370/0750 y MDR61B1600/2500)

Esquemas de conexiones

10.4.6 Chapas de señalización MDR61B1600/2500

3377869323

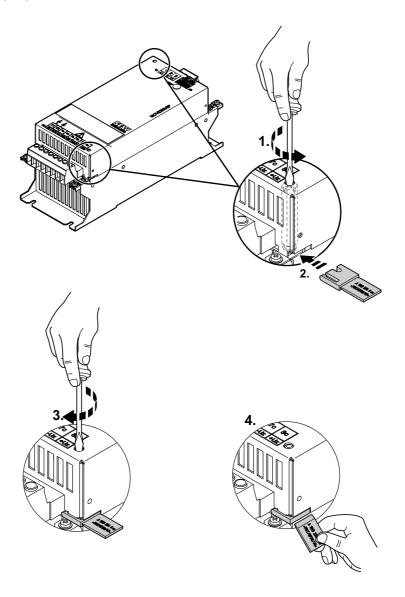
- * Ajuste de fábrica
- ** Si se conectan las entradas binarias con la alimentación de tensión de 24 V_{CC} X13:8 "VO24", conecte en el MOVIDRIVE[®] un puente entre X13:7 (DCOM) y X13:9 (DGND).

DGND (X10, X12, X13, X16, X17) está conectada de fábrica con PE (orificio roscado véase el capítulo "Estructura de la unidad"). Retirando el tornillo de toma a tierra M4 x 14 puede crear el aislamiento eléctrico.

NOTA

Para el sistema de recuperación de la energía de red $MOVIDRIVE^{\textcircled{\$}}$ MDR61B1600/2500 se aplica lo siguiente:

 Para las tensiones de red > 480 V, ajuste al mismo tiempo las señales "Habilitado" y "Bloqueo regulador".



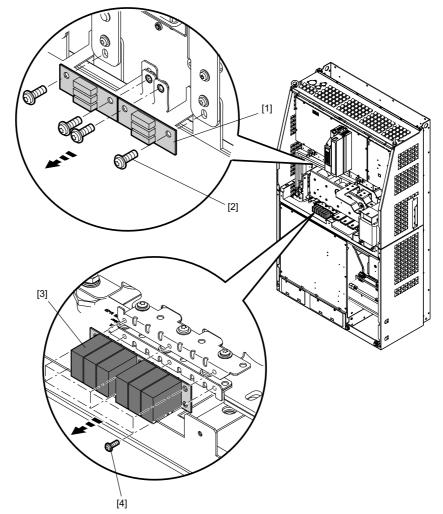
10.5 Transformación en una fuente de alimentación IT

10.5.1 Transformar el MOVIDRIVE® MDR60A0150 tamaño 2 en una fuente de alimentación IT

Para transformar la unidad en una fuente de alimentación IT, proceda de la siguiente forma:

- 1. Suelte los 2 tornillos colocados en la parte delantera de la unidad de tamaño 2.
- 2. Introduzca las 2 placas aislantes en el elemento enchufable, hasta que encajen.
- 3. Vuelva a apretar los 2 tornillos.
- 4. Rompa la placa aislante por el punto de rotura controlada.

Instalación (MDR60A0150/0370/0750 y MDR61B1600/2500)

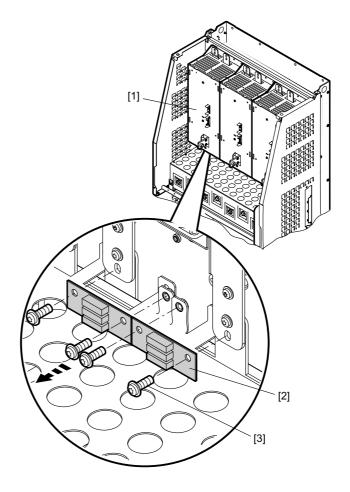


Transformación en una fuente de alimentación IT

10.5.2 Transformar el MOVIDRIVE® MDR61B1600/2500 tamaño 7 en una fuente de alimentación IT

En el tamaño 7 hay 4 módulos "Supresión de interferencias" [1] & [3], que están conectados de $+U_Z$ a la protección de puesta a tierra y de $-U_Z$ hacia la conexión de puesta a tierra. Los módulos se encuentran debajo de los módulos de fases.

Para transformar la unidad en una fuente de alimentación IT, proceda de la siguiente forma:



- 1. Retire la cubierta frontal y la protección contra contacto accidental.
- 2. Suelte los 4 tornillos [2].
- 3. Extraiga los 2 módulos [1].
- 4. Vuelva a atornillar los 2 tornillos de la unión módulo de fases circuito intermedio.
- 5. Suelte los 6 tornillos [4].
- 6. Extraiga los 2 módulos "Supresión de interferencias" [3].

10.5.3 Transformar MOVIDRIVE® MDX62B1500/2000/2500 tamaño 7 en una fuente de alimentación IT

En el tamaño 7 hay 2 módulos "Supresión de interferencias" [2] conmutados de $+U_z$ a PE y de $-U_z$ a PE. Los módulos se encuentran en los módulos de fases [1] U y V de la unidad. Proceda de la siguiente manera para transformar la unidad en una fuente de alimentación IT:

- 1. Afloje los 4 tornillos [3].
- 2. Retire los 2 módulos [2].
- 3. Vuelva a atornillar los 2 tornillos de la unión módulo de fases circuito intermedio.

1

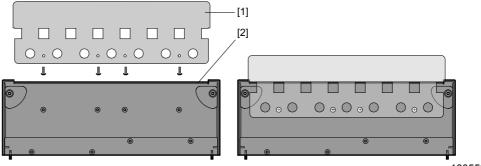
Instalación (MDR60A0150/0370/0750 y MDR61B1600/2500)

Protección contra contacto accidental de las bornas de potencia

10.6 Protección contra contacto accidental de las bornas de potencia

▲ ¡ADVERTENCIA!

Conexiones de potencia sin cubrir.

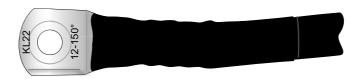

Lesiones graves o fatales por electrocución.

- Instale en la forma prescrita la protección contra contacto accidental.
- No ponga nunca en marcha el aparato sin la protección contra contacto accidental montada.

10.6.1 Protección contra contacto accidental MOVIDRIVE® MDR60A0750 tamaño 4

Para MOVIDRIVE[®] MDR60A0750 tamaño 4, se suministran de serie 2 protecciones contra contacto accidental junto con 8 tornillos de sujeción. Monte la protección contra contacto accidental en ambas cubiertas para las bornas de potencia.

La siguiente figura muestra la protección contra contacto accidental para MOVIDRIVE® MDR60A0750 tamaño 4.


1805522187

La protección contra contacto accidental consta de las siguientes piezas:

- [1] Cubierta
- [2] Cubierta para las conexiones

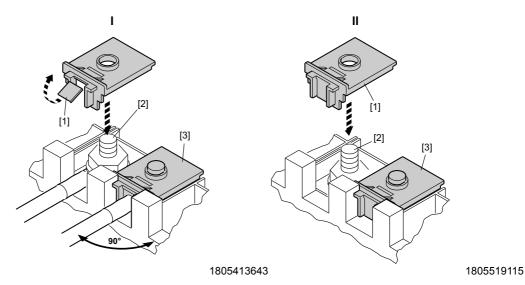
El sistema de recuperación de la energía de red MOVIDRIVE[®] MDR60A0750 alcanza el índice de protección IP10 sólo en las siguientes condiciones:

- · La protección contra contacto accidental está completamente montada
- Los cables de potencia están recubiertos en todas las bornas de potencia con tubo termorretráctil (ejemplo: véase la figura siguiente)

1805525259

NOTA

Si no se cumplen las citadas condiciones, el sistema de recuperación de energía de red MOVIDRIVE® MDR60A0750 de tamaño 4 alcanza el índice de protección IP00.


Protección contra contacto accidental DLB11B

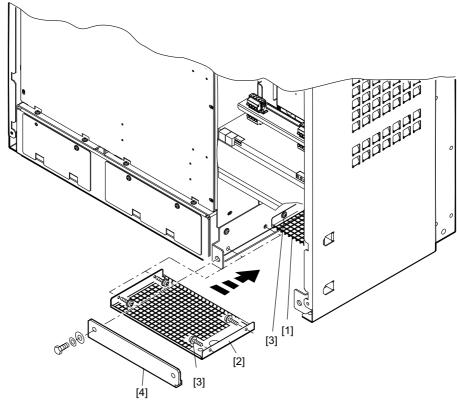
El índice de protección IP20 se alcanza en el sistema de recuperación de energía de red MOVIDRIVE® MDR60A0750 tamaño 4 con la protección contra contacto accidental DLB11B. Para el montaje correcto de la protección contra contacto accidental **DLB11B**, proceda del siguiente modo:

Figura I: Borna de potencia con cables de potencia conectado con sección de cable < 35 mm² (AWG2):

Rompa la brida de plástico [1] y ponga la protección contra contacto accidental DLB11B [3] sobre el respectivo perno de conexión [2] de la borna de potencia. Preste atención a que haya una salida de cable recta. Monte la cubierta para las bornas de potencia.

- Figura II: Borna de potencia sin cable de potencia conectado: Ponga la protección contra contacto accidental DLB11B [1] sobre el respectivo perno de conexión [2]. Monte la cubierta para las bornas de potencia.
- La protección contra contacto accidental no debe montarse a bornas de puesta a tierra.

- [1] Brida de plástico
- [2] Perno de conexión
- correctamente montada
- [1] Protección contra contacto accidental
- [2] Perno de conexión
- [3] Protección contra contacto accidental [3] Protección contra contacto accidental correctamente montada


1

Instalación (MDR60A0150/0370/0750 y MDR61B1600/2500)

Protección contra contacto accidental de las bornas de potencia

10.6.2 Protección contra contacto accidental MOVIDRIVE® MDR61B1600/2500 de tamaño 7

El sistema de recuperación de la energía de red MOVIDRIVE[®] MDR61B1600/2500 de tamaño 7 alcanza el índice de protección IP20 cuando, delante y detrás de las conexiones de potencia, se ha montado la protección contra contacto accidental DLB31B (referencia 1 823 689 8) confeccionada por el cliente.

3348308747

- [1] Protección contra contacto accidental posterior
- [3] Tornillos
- [2] Protección contra contacto accidental anterior
- [4] Puntal en la entrada de red

NOTA

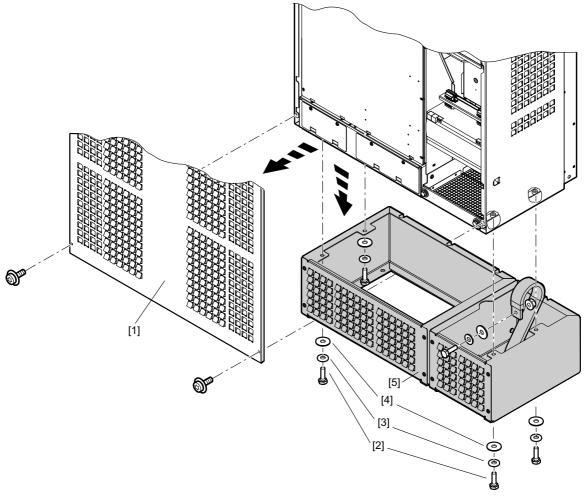
Si no se cumple la citada condición, las unidades MOVIDRIVE $^{\$}$ de tamaño 7 alcanzan el índice de protección IP00.

10.7 Volumen de suministro opcional del tamaño 7

10.7.1 Indicaciones generales

NOTA

Tenga en cuenta los pares de apriete permitidos cuando realice trabajos en el tamaño 7.


Componente	Tornillos	Par de	Par de apriete	
		[Nm]	[lb in]	
Tornillos tapa	M5 × 25	1.4 - 1.7	12 - 15	
Tornillos con arandela moldeada	M4	1.7	15	
	M5	3.4	30	
	M6	5.7	50	
Tornillos pletinas conductoras	M10	20	180	
Espaciador de aislamiento	M10 (SW32)	30	270	

Volumen de suministro opcional del tamaño 7

10.7.2 Zócalo de montaje DLS31B

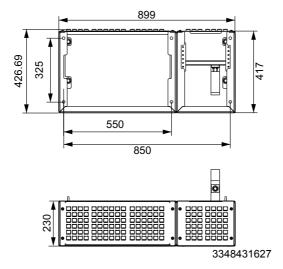
El zócalo de montaje DLS31B con material de montaje (referencia: 1 823 627 8) se utiliza para la fijación en posición erguida del sistema de recuperación de energía de red MOVIDRIVE® MDR61B1600/2500 tamaño 7 en el armario de conexiones. Inmediatamente tras su colocación, el MOVIDRIVE® MDR61B, tamaño 7 se debe atornillar al zócalo de montaje (véase la siguiente figura). El MOVIDRIVE® MDR61B tamaño 7 no debe ponerse en marcha hasta que el zócalo de montaje no esté completamente montado.

3348303115

El material de montaje se incluye en una bolsa de plástico.

- [1] Cubierta frontal
- [2] Tornillo cilíndrico M10 × 30 Allen
- [3] Arandela elástica

- [4] Arandela
- [5] Cubierta frontal del zócalo de montaje

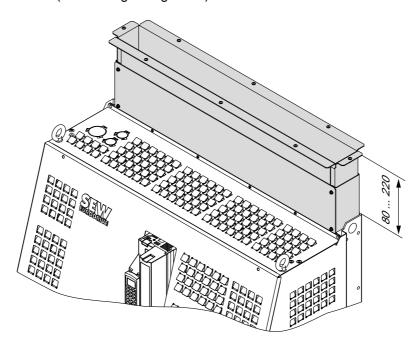


Para montar el zócalo de montaje al MOVIDRIVE[®] B MDR61B de tamaño 7 proceda como se describe a continuación:

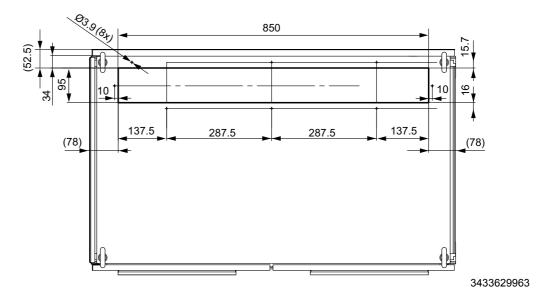
- 1. Afloje (¡no suelte del todo!) los 4 tornillos de fijación de la cubierta frontal [1] hasta que los pueda elevar. Desenganche la cubierta frontal [1].
- 2. Desatornille las 2 cubiertas frontales del zócalo de montaje.
- 3. Los siguientes pasos de trabajo son iguales para cada uno de los 4 orificios de montaje.
 - Coloque la arandela elástica [3] y la arandela plana [4] en el tornillo hexagonal [2] M10×30.
 - Pase el tornillo hexagonal premontado a través del orificio de montaje y atorníllelo.
 - Añada el adhesivo de fijación de tornillos.
- 4. Atornille la brida de unión de puesta a tierra con el tornillo M10×35 premontado a la pletina de conexión de puesta a tierra de la unidad.
- 5. Atornille de nuevo las 2 cubiertas frontales del zócalo de montaje.
- 6. Vuelva a enganchar la cubierta frontal [1] a la unidad y fíjela con los 4 tornillos de fijación.

Dimensiones del zócalo de montaje DLS31B

La siguiente figura muestra las dimensiones del zócalo de montaje DLS31B.

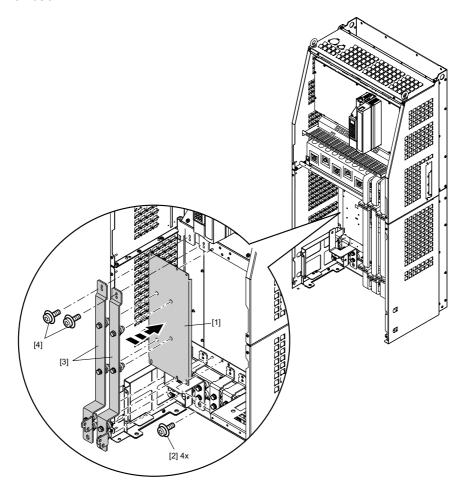

Instalación (MDR60A0150/0370/0750 y MDR61B1600/2500)

Volumen de suministro opcional del tamaño 7


10.7.3 Canal de aire DLK31B

Para refrigerar el sistema de recuperación de energía de red MOVIDRIVE[®] MDR61B1600/2500 tamaño 7 existe la posibilidad de adquirir un **canal de aire DLK31B** (referencia: 1 823 458 5). El canal de aire solo se puede montar verticalmente, orientado hacia arriba (véase la figura siguiente).

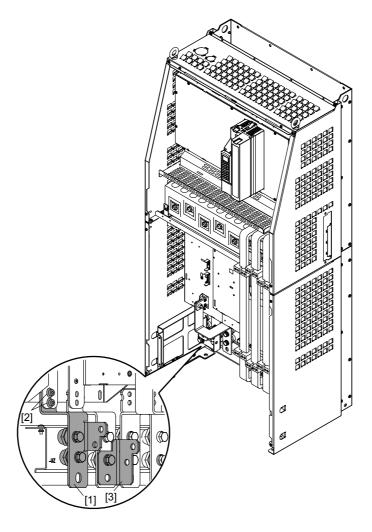
3321678475


Dimensiones del fragmento del techo para el canal de aire DLK31B La figura siguiente muestra el fragmento del techo del armario de conexiones para el canal de aire DLK31B.

10.7.4 Adaptador del circuito intermedio 2Q DLZ12B

Para realizar la conexión del circuito intermedio, se puede utilizar **el adaptador de circuito intermedio 2Q DLZ12B** (referencia: 1 822 729 5) en la parte inferior de la unidad:

- 1. Suelte los 4 tornillos de la cubierta superior y de la inferior y retírelas.
- 2. Suelte los 5 tornillos del elemento enchufable y desmóntelo.
- 3. Coloque la cubierta en su correspondiente alojamiento del módulo del freno chopper sobre el pasador de fijación.
- 4. Fije los 2 tornillos de fijación superiores [2] de la cubierta [1] al bastidor. Fije los 2 tornillos de fijación inferiores de la cubierta al bastidor.
- 5. Atornille los espaciadores de aislamiento a la cubierta [1].
- 6. Atornille los espaciadores de aislamiento al bastidor (abajo).
- 7. Fije los 2 tornillos de la placa de fijación -U_z al circuito intermedio (arriba a la izquierda).
- 8. Fije los 2 tornillos de la placa de fijación +U_z al circuito intermedio (arriba a la derecha).
- 9. Fije los 4 tornillos de fijación de las placas de fijación -U_z y +U_z al espaciador de aislamiento.
- 10. Apriete todos los tornillos de las placas de fijación -U_z y +U_z.
- 11. Vuelva a montar las cubiertas.



Instalación (MDR60A0150/0370/0750 y MDR61B1600/2500)

Volumen de suministro opcional del tamaño 7

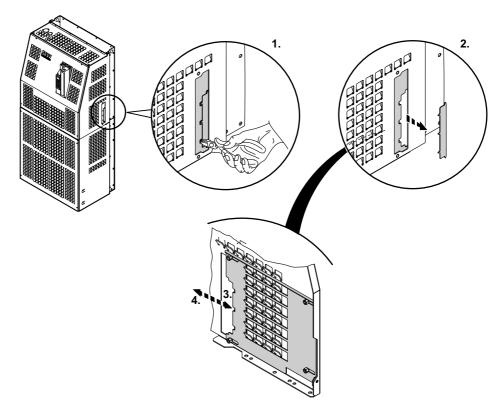
10.7.5 Adaptador de circuito intermedio 4Q DLZ14B

Para realizar la conexión del circuito intermedio, se puede utilizar **el adaptador de circuito intermedio 4Q DLZ14B** (referencia: 1 822 728 7) en la parte inferior de la unidad:

- 1. Suelte los 4 tornillos de la cubierta superior y desmóntela.
- 2. Suelte los 4 tornillos de la cubierta inferior y desmóntela.
- 3. Fije los 2 tornillos la pletina conductora [1] -U_z del módulo de freno chopper (abajo a la izquierda) al espaciador de aislamiento.
- 4. Fije los 2 tornillos de la pletina conductora [1] -U_z al espaciador de aislamiento.
- 5. Apriete todos los tornillos de la placa de fijación - U_z .
- 6. Atornille el ángulo [3].
- 7. Vuelva a montar las cubiertas.

10.7.6 Pared lateral para la conexión de circuito intermedio

Para unir lateralmente 2 unidades con las conexiones de circuito intermedio DLZ11B o DLZ31B, se debe abrir, a modo de preparación, la pared lateral del MOVIDRIVE $^{\textcircled{\$}}$.


Para preparar el MOVIDRIVE[®] para la unión lateral, proceda como se indica a continuación:

▲ ¡PRECAUCIÓN!

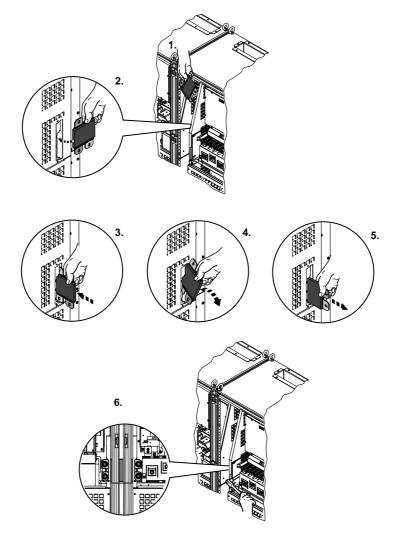
Aristas de corte afiladas ¡Peligro de lesiones leves!

• Utilice guantes de protección adecuados cuando tenga que cortar.

- Recorte la abertura con unos alicates de corte diagonal tal como se muestra en la figura.
- 2. Retire la chapa recortada.
- 3. Con la cubierta frontal abierta, la puerta corredera que da a la conexión de circuito intermedio se puede desplazar libremente.
- 4. Al atornillar la cubierta frontal, cierre la puerta corredera que da a la conexión de circuito intermedio y fíjela.

Instalación (MDR60A0150/0370/0750 y MDR61B1600/2500)

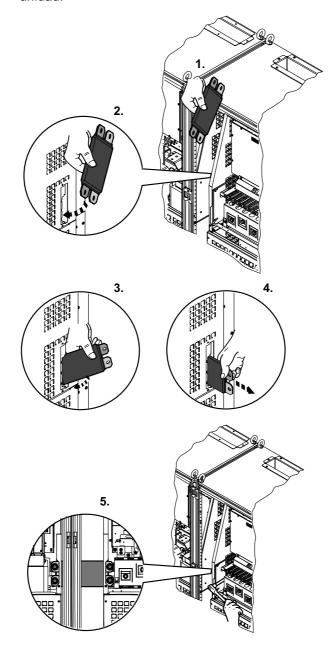
Volumen de suministro opcional del tamaño 7


10.7.7 Conexión de circuito intermedio DLZ11B

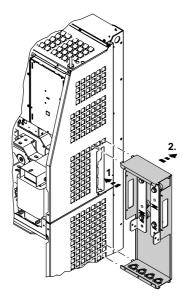
Para la unión lateral de 2 unidades de tamaño 7 se puede utilizar la **conexión de circuito intermedio DLZ11B**. La conexión de circuito intermedio DLZ11B se ofrece en 3 longitudes distintas:

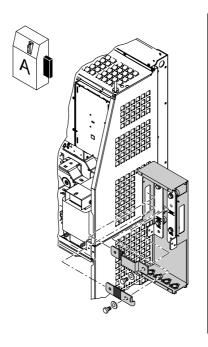
100 mm (referencia: 1 823 193 4)
200 mm (referencia: 1 823 566 2)
300 mm (referencia: 1 823 567 0)

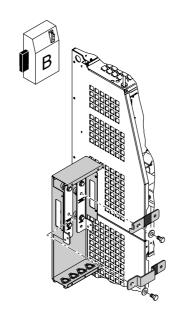
Para conectar 2 unidades entre sí, proceda como se indica a continuación:


- 1. Las unidades que se van a conectar tienen que estar a ras de suelo y, en función de la conexión de circuito intermedio, a una distancia definida las unas de las otras de 100 mm, 200 mm o 300 mm.
- 2. Suelte los 4 tornillos de la cubierta superior y desmóntela.
- 3. Suelte los 4 tornillos de la cubierta inferior y desmóntela.
- 4. Corte la apertura en la pared lateral según lo indicado en el capítulo "Pared lateral para la conexión de circuito intermedio" (→ pág. 137).
- 5. Introduzca las conexiones de circuitos intermedios en las unidades.
 - Introduzca la conexión de circuito intermedio de 100 m de canto en la unidad.
 - Gire la conexión de circuito intermedio de 100 mm 90° en la unidad.

- Introduzca la conexión de circuito intermedio de 200 mm y 300 mm inclinada en la unidad hasta el tope.
- Deslice la conexión de circuito intermedio desde arriba dentro de la segunda unidad.

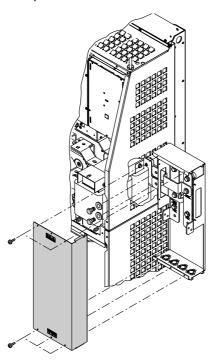

- 6. Fije la conexión de circuito intermedio con tornillos primero en una unidad y, a continuación, en las otras unidades.
- 7. Apriete los tornillos.
- 8. Coloque de nuevo las cubiertas.


10.7.8 Conexión de circuito intermedio DLZ31B


Para unir lateralmente una unidad de tamaño 7 con un tamaño inferior se puede utilizar la **conexión de circuito intermedio DLZ31B** (referencia: 1 823 628 6):

3435514891

- 1. Suelte los 4 tornillos de la cubierta superior y desmóntela.
- 2. Suelte los 5 tornillos de la tapa de la conexión de circuito intermedio y retire la tapa.
- 3. Corte la apertura en la pared lateral según lo indicado en el capítulo "Pared lateral para la conexión de circuito intermedio" (→ pág. 137).
- 4. Enganche la conexión de circuito intermedio en la pared lateral del tamaño 7.
- 5. Fije la conexión de circuito intermedio en la pared lateral del tamaño 7 con tornillos autorroscantes.



- 6. Introduzca las conexiones de circuitos intermedios en las unidades. En función de la posición de montaje, tenga en cuenta la disposición de las pletinas conductoras.
 - Montaje A: pletina conductora larga con ángulo arriba, pletina conductora corta debajo
 - Montaje B: pletina conductora corta arriba, pletina conductora larga con ángulo debajo
- 7. Fije las conexiones de circuitos intermedios primero en el tamaño 7 con tornillos y, a continuación, en la conexión de circuito intermedio.
- 8. Apriete los tornillos.

3435512971

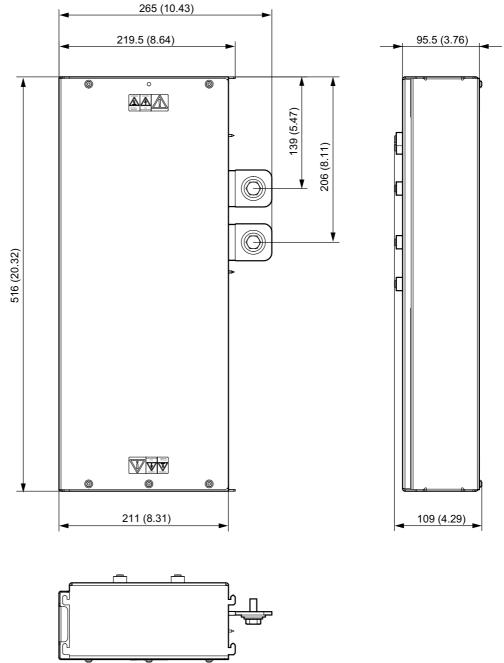
1. Coloque de nuevo las cubiertas.

Posibilidades de conexión para cada pletina conductora Dispone de las siguientes posibilidades de conexión en las pletinas colectoras:

- 2 orificios con diámetro de 7 mm.
- 1 orificio con diámetro de 11 mm.

Observe además las indicaciones de instalación siguientes:

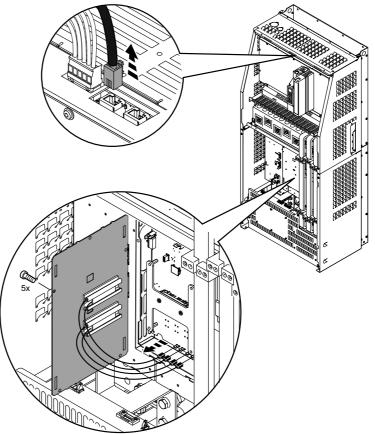
- Conexión de máx. 2 × 150 mm² por pletina colectora.
- Equipe los terminales del cable con tubo termorretráctil.
- Asegure que la distancia de tensión entre los extremos de los tornillos y las piezas de chapa sea suficiente.
- Se dispone de 4 posibilidades de salida para las entradas de cables M20 o M32.
- Utilice la protección de aristas adjunta para los cables ≥ 150 mm².



Instalación (MDR60A0150/0370/0750 y MDR61B1600/2500) Volumen de suministro opcional del tamaño 7

Dimensiones de la conexión de circuito intermedio DLZ31B

La siguiente figura muestra las dimensiones de la conexión de circuito intermedio DLZ31B.



10.7.9 Transformación en un convertidor de corriente a motor

Un variador MOVIDRIVE® MDX61B se puede utilizar como convertidor de corriente a motor MDR62B. Se tienen en cuenta los siguientes casos de aplicación:

- Alimentación a través de un sistema de recuperación de la energía de red MDR61B.
- Alimentación a través de MOVIDRIVE® MDX61B del tipo de conexión B.

Para utilizar un variador como un convertidor de corriente a motor MDX62B proceda como se describe a continuación:

- Suelte los 4 tornillos de la cubierta superior y desmóntela.
- Suelte los 4 tornillos de la cubierta inferior y desmóntela.
- Tire del conector de bus CAN (RJ45) situado en el lado superior del variador.
- Suelte los 5 tornillos de la cubierta que da al control previo y de descarga y retire la cubierta.
- Retire de la pletina los 4 conectores planos de las resistencias de descarga.
- · Fije los cables sueltos.
- · Atornille de nuevo las cubiertas.

11

En este capítulo se describe la puesta en marcha de los siguientes sistemas de recuperación de la energía de red:

Puesta en marcha (MDR60A0150/0370/0750 y MDR61B1600/2500)

- MOVIDRIVE® MDR60A0150-503-00
- MOVIDRIVE[®] MDR60A0370-503-00
- MOVIDRIVE[®] MDR60A0750-503-00
- MOVIDRIVE® MDR61B1600-503-00/L
- MOVIDRIVE[®] MDR61B2500-503-00/L

11.1 Evaluación del mensaje de disponibilidad para el funcionamiento

El mensaje de disposición para el funcionamiento del sistema de recuperación de energía de red queda desactivado en caso de una sobrecarga térmica del MDR60A y de fallos de red. A dicho mensaje le **debe** seguir una de las siguientes reacciones:

- A. Desconecte inmediatamente el sistema de recuperación de la energía de la red.
- B. Desconecte inmediatamente los convertidores conectados al sistema de recuperación de la energía de red.
- C. Desconecte con retardo los convertidores conectados al sistema de recuperación de la energía de red.
- D. Pare los accionamientos de forma controlada.

En las reacciones A, B y C tiene prioridad la protección térmica de la unidad mientras que en la reacción D tiene prioridad la parada controlada de los accionamientos.

11.1.1 Reacción A: Desconectar inmediatamente el sistema de recuperación de la energía de la red.

Diagrama de conexión del mensaje de disponibilidad para el funcionamiento MDR60A A fin de proteger el sistema de recuperación de la energía de red MOVIDRIVE[®] MDR60A contra la sobrecarga térmica, el mensaje de disponibilidad para el funcionamiento debe ser utilizado por el sistema de recuperación de la energía de red para desconectar el contactor de red K11.

La siguiente figura muestra como es posible conectar el mensaje de disponibilidad para el funcionamiento (preparado) del sistema de recuperación de la energía de red con la entrada binaria "red on" del convertidor para que pueda ser evaluado según las reacciones B ... D.

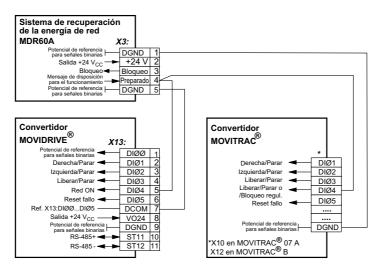
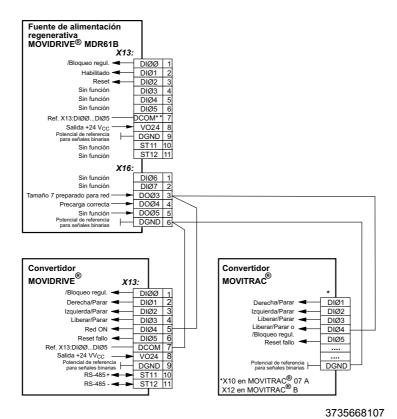



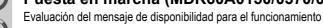
Diagrama de conexión del mensaje de disponibilidad para el funcionamiento MDR61B

La siguiente figura muestra como es posible conectar el mensaje de disponibilidad para el funcionamiento (TAMAÑO 7 PREPARADO PARA LA RED) del sistema de recuperación de la energía de red MDR61B de tamaño 7 con la entrada binaria "red on" del convertidor para que pueda ser evaluado según las reacciones B ... D.

11.1.2 Reacción B: Desconectar inmediatamente los convertidores conectados al sistema de recuperación de la energía de red.

MOVIDRIVE[®]: Se asigna el mensaje de disposición para el funcionamiento a una entrada digital de cada uno de los convertidores conectados. Parametrice dicha entrada como "red on" (P60_). De esta forma tiene la posibilidad de desconectar el convertidor (P521 "Reacción de desconexión de la red = /BLOQUEO REGUL."). Ajuste el "tiempo de reacción de desconexión de la red" (P520) a 0 segundos.

Ajuste de los parámetros del convertidor:


P520 (tiempo de reacción de desconexión de red) = "0 s"

P521 (reacción de desconexión de red) = "/BLOQUEO REGUL."

P60_ (entrada binaria) = "RED ON"

 $\rm MOVITRAC^{\circledR}$ 07: Conecte la borna X3:4 "Listo para funcionamiento" del MDR60A con una entrada binaria programada a "/Bloqueo de regulador".

Puesta en marcha (MDR60A0150/0370/0750 y MDR61B1600/2500)

11.1.3 Reacción C: Desconectar con retardo los convertidores conectados al sistema de recuperación de la energía de red (no en caso de MOVITRAC® 07):

En el caso en que los fallos en la red en funcionamiento motor no lleven a la desconexión inmediata de los convertidores, p. ej. en redes deficientes, existe la siguiente posibilidad:

Proceda tal y como se explica en Reacción B. Ajuste el "tiempo de reacción de desconexión de red" (P520) ≥ 300 ms para salvar el tiempo de retardo de activación (200 ms) del sistema de recuperación de la energía de red tras la recuperación de la tensión de red. Aquellos fallos de red cuya duración no sea mayor que el tiempo de reacción de desconexión de red menos 200 ms no originan la desconexión del convertidor.

En el caso en que los fallos de red tampoco lleven a la desconexión inmediata de los convertidores durante el funcionamiento generador, será necesario equipar los convertidores con resistencias de frenado.

Ajuste de los parámetros del convertidor:

P520 (tiempo de reacción de desconexión de red) = "0,3 ... 5,0 seg."

P521 (reacción de desconexión de red) = "/BLOQUEO REGUL."

P60_ (entrada binaria) = "RED ON"

11.1.4 Reacción D: Parar los accionamientos de forma controlada.

MOVIDRIVE[®]: Para parar los accionamientos de forma controlada (rampa de parada de emergencia) en caso de fallo en la red o en el aparato, los convertidores deben estar equipados con resistencias de frenado. En relación con este punto, consulte el capítulo "Selección de la resistencia de frenado" (\rightarrow pág. 79).

Proceda tal y como se explica en Reacción B. La rampa de parada de emergencia debe iniciarse inmediatamente y ser tan reducida que el accionamiento se encuentre en el modo generador de funcionamiento hasta su parada. El "tiempo de reacción de desconexión de la red" (P520) debe estar ajustado a 0 ms

Ajuste de los parámetros del convertidor:

P137 (rampa de parada de emergencia) = "xxx s"

P520 (tiempo de reacción de desconexión de red) = "0 s"

P521 (reacción de desconexión de red) = "/P. EMERG"

P60 (entrada binaria) = "RED ON"

MOVITRAC® 07: Conecte la borna X3:4 "Listo para funcionamiento" del MDR60A con una entrada binaria programada a "Habilitado/parada" y ajuste la rampa de parada (P136).

11.2 Ajuste de los parámetros P52 "Control de desconexión de red"

Programe una entrada binaria de MOVIDRIVE® (P60_/P61_) como "red on" a fin de poder evaluar una señal de red on externa. Como señal de red on se utiliza el mensaje de disposición (preparado) para el funcionamiento del sistema de recuperación de la energía de red MOVIDRIVE® MDR60A.

- El ajuste de fábrica de los parámetros se destaca en cada caso mediante subrayado.
- El ajuste del parámetro P52_ no existe en MOVITRAC® 07A/MOVITRAC® B

11.2.1 Tiempo de reacción de desconexión de red P520

Rango de ajuste: $\underline{0} - 5$ s (ancho de paso: 0,1 s)

Mediante este parámetro se ajusta el tiempo de retardo. Durante el tiempo de retardo no se producirá ninguna reacción a un fallo de red. Dado que el mensaje de disposición para el funcionamiento del sistema de recuperación de la energía de red se sitúa a "0" durante un tiempo de 200 ms en el caso de fallos cortos de red, el tiempo de reacción de desconexión de red ajustado ha de ser ≥ 300 ms. En el caso de P520 < 300 ms, ningún tiempo de retardo será efectivo.

11.2.2 P521 Reacción de desconexión de red

Rango de ajuste: BLOQUEO DE REGULADOR / PARADA DE EMERGENCIA

En el caso en que la señal de conexión a red sea = "0" y el tiempo de reacción de desconexión de red haya transcurrido, se hará efectiva la reacción de desconexión de red. La reacción de desconexión de red no ocasiona mensajes de error en el convertidor. Es posible ajustarla:

BLOQUEO DE REGULADOR

Tiene lugar el bloqueo de la etapa final (adquiere una alta resistencia) y el freno se activa o bien el motor sin freno se detiene por inercia. Cuando la señal de conexión a red sea = "1", el accionamiento vuelve a ponerse en funcionamiento.

P. EMERG

Se inicia la parada en la rampa de parada de emergencia (t14/t24). En caso de alcanzar el régimen de giro (P300/P310), se activa el freno. Si durante el proceso de parada la señal de red on pasa a ser = "1", la parada de emergencia será interrumpida y el accionamiento se activará de nuevo.

Puesta en marcha (MDR60A0150/0370/0750 y MDR61B1600/2500)

Puesta en marcha con la consola de programación DBG60B

11.3 Puesta en marcha con la consola de programación DBG60B

El sistema de recuperación de la energía de red MOVIDRIVE[®] MDR61B se puede poner en marcha en combinación con la consola de programación DBG60B (a partir de la versión de firmware 15 de la consola de programación). La visualización y el ajuste de los parámetros se puede realizar mediante la consola de programación.

La consola de programación DBG60B no se puede utilizar junto con el sistema de recuperación de la energía de red MOVIDRIVE® MDR60A.

11.4 Funcionamiento de MOVITOOLS® MotionStudio

El sistema de recuperación de la energía de red MOVIDRIVE® MDR61B se puede poner en marcha en combinación con el software de ingeniería MOVITOOLS® MotionStudio. La visualización y el ajuste de los parámetros se puede realizar mediante el software de ingeniería.

El software de ingeniería $MOVITOOLS^{\circledR}$ MotionStudio no se puede utilizar en combinación con el sistema de recuperación de la energía de red $MOVIDRIVE^{\circledR}$ MDR60A.

11.4.1 Acerca de MOVITOOLS® MotionStudio

Tareas

El paquete de software le ofrece continuidad en la ejecución de las siguientes tareas:

- Establecer comunicación con las unidades
- · Ejecutar funciones con las unidades

Establecer comunicación con las unidades

Para la comunicación con las unidades está integrado el SEW Communication Server en el paquete de software $MOVITOOLS^{\circledR}$ MotionStudio.

Con el SEW Communication Server usted prepara los **canales de comunicación**. Una vez preparados, las unidades comunican con ayuda de sus opciones de comunicación a través de estos canales de comunicación. Puede operar simultáneamente como máximo 4 canales de comunicación.

 ${\sf MOVITOOLS}^{\texttt{\$}}\,{\sf MotionStudio}\,\,{\sf soporta}\,\,{\sf los}\,\,{\sf siguientes}\,\,{\sf tipos}\,\,{\sf de}\,\,{\sf canales}\,\,{\sf de}\,\,{\sf comunicación}\colon$

- En serie (RS-485) a través de adaptador de interfaces
- Bus de sistema (SBus) a través de adaptador de interfaces
- Ethernet
- EtherCAT[®]
- Bus de campo (PROFIBUS DP/DP-V1)
- · Tool Calling Interface

En función de la unidad y sus opciones de comunicación están disponibles distintos canales.

Ejecutar funciones con las unidades

El paquete de software le ofrece continuidad en la ejecución de las siguientes funciones:

- Parametrización (por ejemplo en el árbol de parámetros de la unidad)
- · Puesta en marcha
- Visualización y diagnóstico
- Programación

Funcionamiento de MOVITOOLS® MotionStudio

Para ejecutar las funciones con las unidades están integrados en el paquete de software $MOVITOOLS^{\circledR}$ MotionStudio los siguientes componentes básicos:

- MotionStudio
- MOVITOOLS[®]

Todas las funciones corresponden con **herramientas**. $MOVITOOLS^{\circledR}$ MotionStudio ofrece para cada tipo de unidad las herramientas adecuadas.

Puesta en marcha (MDR60A0150/0370/0750 y MDR61B1600/2500)

Funcionamiento de MOVITOOLS® MotionStudio

Asistencia técnica

SEW-EURODRIVE le ofrece una línea de servicio de asistencia las 24h.

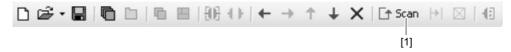
Marque el número +49 0 18 05 y a continuación introduzca la palabra SEWHELP mediante las teclas de su teléfono. También puede marcar el número +49 0 18 05 - 7 39 43 57.

Ayuda online

Tras la instalación, tiene a su disposición los siguientes tipos de ayuda:

- Una vez iniciado el software, tiene a su disposición la documentación en la ventana de ayuda.
 - Si no desea ver la ventana de ayuda al iniciar el software, desactive la casilla "Activar" del punto de menú [Configuración] / [Opciones] / [Ayuda].
 - Si desea ver la ventana de ayuda al iniciar el software, active la casilla "Activar" del punto de menú [Configuración] / [Opciones] / [Ayuda].
- En aquellos campos donde deba realizar entradas, dispondrá de un menú contextual. Por ejemplo, pulsando la tecla <F1> se le muestran los rangos de valores de los parámetros de la unidad.

11.4.2 Primeros pasos


Iniciar el software y crear un proyecto

Para iniciar $\mathsf{MOVITOOLS}^{\circledR}$ MotionStudio y crear un proyecto, proceda del siguiente modo:

- 1. Inicie MOVITOOLS[®] MotionStudio desde el menú de inicio de Windows en el siguiente punto de menú:
 - [Start] / [Programs] / [SEW] / [MOVITOOLS-MotionStudio] / [MOVITOOLS-MotionStudio]
- 2. Cree un proyecto con nombre y ubicación.

Establecer comunicación y escanear la red Para establecer con MOVITOOLS[®] MotionStudio una comunicación y escanear su red, proceda del siguiente modo:

- Prepare el canal de comunicación para comunicar con sus unidades.
 Encontrará indicaciones detalladas sobre la configuración de un canal de comunicación en el apartado del tipo de comunicación correspondiente.
- 2. Examine su red (examen de unidades). Pulse para este fin el botón [Start network scan] [1] en la barra de herramientas.

1132720523

- 1. Seleccione la unidad que desee configurar.
- Abra el menú contextual, haciendo un clic con el botón derecho del ratón.
 Como resultado podrá ver una herramientas específicas de la unidad para ejecutar funciones con las unidades.

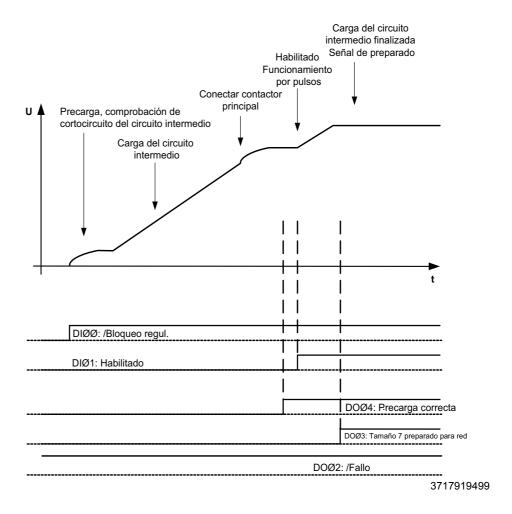
Puesta en marcha (online) de unidades Para poner en marcha (online) unidades, proceda del siguiente modo:

- 1. Cambie a la vista de red.
- 2. Haga clic en el símbolo "Cambiar al modo online" [1] en la barra de herramientas.

1184030219

- [1] Símbolo "Cambiar al modo online"
- 3. Seleccione la unidad que desee poner en marcha.
- 4. Abra el menú contextual y seleccione el comando [Puesta en marcha] / [Puesta en marcha]
 - Se abre el asistente de puesta en marcha.
- 5. Siga las instrucciones del asistente para la puesta en marcha y a continuación cargue los datos de la puesta en marcha a su unidad.

Puesta en marcha (MDR60A0150/0370/0750 y MDR61B1600/2500)

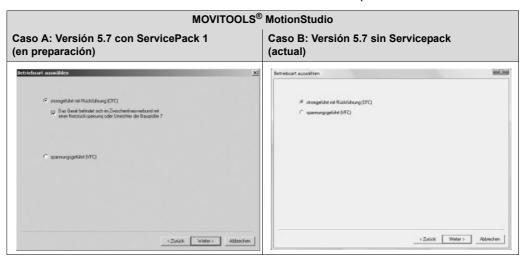


Proceso de carga del circuito intermedio de MOVIDRIVE® MDR61B

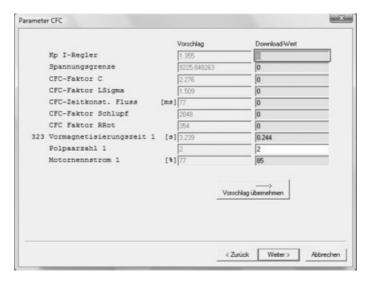
11.5 Proceso de carga del circuito intermedio de MOVIDRIVE® MDR61B

El sistema de recuperación de la energía de red MOVIDRIVE® MDR61B dispone de una gestión automática del circuito intermedio. La unidad básica controla automáticamente los procesos de carga y descarga, sin ningún control externo.

El diagrama siguiente muestra el procedimiento esquemático de la carga:


11.6 Ajuste para el proceso de control CFC/Servo

Si se utiliza el proceso de control CFC, se tiene que seleccionar dicho proceso durante la puesta en marcha. A continuación se describe cómo se debe seleccionar el proceso y qué procedimiento se debe seguir en función de la versión de ${\sf MOVITOOLS}^{@}$ MotionStudio.



• Seleccione el modo de funcionamiento CFC "controlado por tensión con retorno".

- En el caso A (versión 5.7 con ServicePack 1): Active la casilla de verificación "La unidad se encuentra en la conexión de circuito intermedio...".
- En el caso B (versión 5.7 sin ServicePack 1) debe además reducirse a la mitad la ganancia del regulador de corriente (cap. Regulador I).
 - Confirme la selección con la combinación de teclas <Mayús> + <Siguiente>.
 - Modifique el ajuste del regulador Kp I al 50 % del valor propuesto.

NOTA

En las siguientes combinaciones de unidades no se pueden utilizar servomotores síncronos con $MOVIDRIVE^{\circledR}$:

- Sistema de recuperación de la corriente de red MOVIDRIVE $^{\circledR}$ MDR61B de tamaño 7 en la conexión de circuito intermedio con variadores vectoriales MOVIDRIVE $^{\circledR}$ MDX61B de tamaño 0 6
- Variador vectorial MOVIDRIVE[®] MDX61B de tamaño 7 de tipo de conexión A o B con variador vectorial MOVIDRIVE[®] MDX61B de tamaño 0 6

Comportamiento funcional

12 Funcionamiento (MDR60A0150/0370/0750 y MDR61B1600/2500)

A ¡ADVERTENCIA!

Electrocución por condensadores no descargados completamente.

Lesiones graves o fatales.

- Tras desconectar el suministro de energía, espere un tiempo mínimo de diez minutos.
- Con independencia de lo que muestre el LED indicador, antes de tocar las conexiones de potencia, se debe comprobar si existe tensión.

12.1 Comportamiento funcional

Cuando se cumplen los requisitos de la red, el sistema de recuperación de la energía de red proporciona un comportamiento funcional seguro a una capacidad de sobrecarga de I_N = 150 % durante al menos 60 s.

12.1.1 Bloquear el convertidor de corriente de la recuperación de corriente a la red

Para mantener bajos las reacciones a la red, se puede bloquear el convertidor de corriente de la recuperación de energía de red mediante una señal de 24 V_{CC} en la borna X3:3 (bloqueo). El tiempo de bloqueo mínimo del sistema de recuperación de energía de red MOVIDRIVE® MDR60A0150/0370/0750 (tamaño 2 – 4) es de 1,5 s. Si la señal de 24 V_{CC} < 1,5 s está activa, el sistema de recuperación de energía de red permanece bloqueado durante 1,5 s. A continuación se vuelve a desbloquear la recuperación de energía inmediatamente después de retirar el bloqueo.

MOVIDRIVE $^{\circledR}$ MDR60A0150/0370/0750 (tamaños 2 – 4) señaliza también en el estado bloqueado el estado de funcionamiento "Preparado". ¡Téngalo en cuenta en el control de proceso de su instalación!

12.2 Indicaciones de funcionamiento

12.2.1 Indicaciones de funcionamiento del MOVIDRIVE® MDR60A0150/0370/0750

Mensaje de disponibilidad para el servicio Los fallos de red (en una o varias fases) serán reconocidos dentro de un semiciclo de red, la recuperación de corriente queda bloqueada y se desactiva el mensaje de disposición para el funcionamiento. Cuando la tensión de red se restablece, este evento es detectado asimismo dentro de un semiciclo de red y la recuperación de corriente a la red continúa automáticamente tras un retardo de activación de 200 ms. Se activa de nuevo el mensaje de disposición para el funcionamiento. Por el contrario, el rectificador de red del sistema de recuperación de la energía de red permanece siempre activado.

Al detectar fallos de red y sobrecarga térmica en el sistema de recuperación de la energía de red, el mensaje de disposición para el funcionamiento queda desactivado. Dicho mensaje de disposición para el funcionamiento sirve para la protección térmica del sistema de recuperación de la energía de red.

Es necesario conectar una resistencia de frenado al convertidor para detener los accionamientos conectados de forma controlada en caso de una interrupción o fallo de red. Esta será conectada a la corriente únicamente en el proceso de frenado durante una interrupción en la red.

Estado de la unidad/ Estado de la red	Respuesta	Mensaje de disposición para el funcionamiento	Señal de aviso de disponibilidad para el funcionamiento
Fallo de red o fallo en el aparato → MDR60A no está preparado	Reconocimiento de fallo en la red sometida a carga dentro de un semiciclo de red. Bloqueo inmediato de la recuperación de la energía. El rectificador de entrada permanece siempre activado.	No está preparado para el funcionamiento	rojo
Red de nuevo en correcto estado y ningún fallo en la unidad → MDR60A está preparado	El reconocimiento del correcto estado de la red tiene lugar dentro de un semiciclo de red. El sistema de recuperación de corriente de red se inicia automáticamente tras un retardo de activación de 200 ms ¹⁾ .	Preparado para el funcionamiento tras 200 ms	amarillo

¹⁾ garantiza el funcionamiento seguro en el caso de vibración en el contacto de protección.

Indicaciones de funcionamiento

12.2.2 Indicaciones de funcionamiento del MOVIDRIVE® MDR61B1600/2500

Display de 7 segmentos

El display de 7 segmentos muestra el estado de funcionamiento del sistema de recuperación de la energía de red MOVIDRIVE[®] MDR 1600/2500 y, en caso de fallo, un código de fallo o de advertencia.

Display de 7 segmentos	Estado de la unidad (Byte alto en la palabra de estado 1)	Significado
0	0	Funcionamiento de 24 V (convertidor no está listo)
1	1	Bloqueo regulador activado
2	2	Sin habilitación
3	3	El circuito intermedio se está cargando
4	4	Habilitado
8	8	Estado de entrega
d	13	Precarga
F	Número de fallo	Display de fallo (parpadeante)
t	16	Convertidor espera datos
U	17	Puente de señales X17 no instalado
⊣ 2 ⊣ 4	-	RAM defectuosa

Consola de programación DBG60B

Pantallas iniciales:

50,0Hz
0.000Amp
BLOQUEO REGULAD.

Mensaje visualizado si X13:1 (DIØØ "/BLOQUEO REGULADOR") = "0".

50,0Hz 0.000Amp SIN HABILITACIÓN

Indicación con X13:1 (DIØØ "/BLOQUEO REGULADOR") = "1" y variador no habilitado ("HABILITACIÓN/PARADA " = "0").

50,0Hz 0.990Amp HABILITADO

Mensaje si el variador está habilitado.

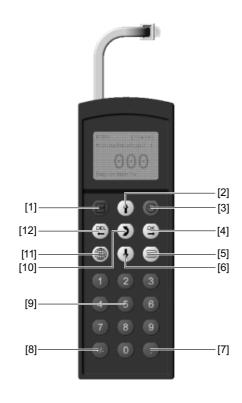
NOTA 6: VALOR DEMASIADO ALTO

Mensaje informativo

(DEL)=Salir FALLO 9 PUESTA EN MARCHA

Indicación de fallo

Asignación de teclas DBG60B


Indicación de tensión de circuito intermedio en tamaño 7 MOVIDRIVE® B, tamaño 7 contiene adicionalmente un LED de visualización debajo de la cubierta frontal inferior. Si el LED de visualización está iluminado, esto indica que hay una tensión de circuito intermedio. No se deben tocar las conexiones de potencia. Con independencia de lo que muestre el LED indicador, antes de tocar las conexiones de potencia, se debe comprobar si existe tensión.

NOTA

La indicación de tensión del circuito intermedio se apaga 20 s aprox. tras la desconexión de la red.

12.3 Asignación de teclas DBG60B

1810609803

[1] Tecla STOP Parada

[3] Tecla RUN Inicio

[4] Tecla OK, confirma la entrada

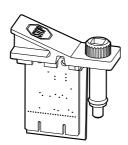
[8] Tecla 🖟 Cambio de signo

[9] Tecla 0-9 Cifras 0 ... 9

[10] Tecla 🕥 Cambio de menú

[11] Tecla Seleccionar idioma

[12] Tecla 🖭 Borrar última entrada



Tarjeta de memoria

12.4 Tarjeta de memoria

La tarjeta de memoria enchufable está montada en el equipo básico. En la tarjeta de memoria están almacenados los datos de la unidad que siempre están actualizados. En el caso en que haya que cambiar un equipo, basta quitar de éste la tarjeta de memoria y ponérsela al equipo nuevo para poner de nuevo en marcha la instalación con una pérdida de tiempo mínima y sin necesidad de PC o una copia de seguridad de los datos.

En la siguiente imagen puede ver la tarjeta de memoria.

1810728715

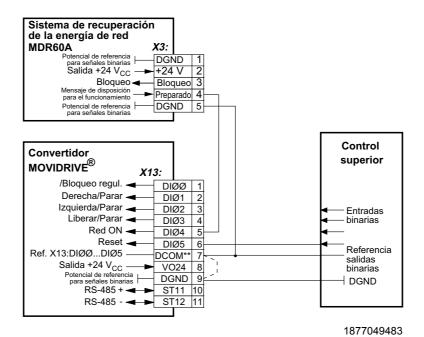
 Deberá enchufar la tarjeta de memoria sólo en el estado desconectado del MOVIDRIVE[®] MDR61B.

A ¡ADVERTENCIA!

Electrocución por condensadores no descargados completamente.

Lesiones graves o fatales.

- Tras desconectar el suministro de energía, espere un tiempo mínimo de diez minutos.
- Con independencia de lo que muestre el LED indicador, antes de tocar las conexiones de potencia, se debe comprobar si existe tensión.


13.1 Información de fallos

13.1.1 Información de fallos del MOVIDRIVE® MDR60A0150/0370/0750

Reset del sistema de recuperación de la energía de red Tras cada desconexión se produce un reset automático en el recuperador de corriente (\rightarrow cap. "Comportamiento funcional").

Convertidor

La reacción de desconexión de red no ocasiona mensajes de fallo en el convertidor (no es necesario un reset). Para otros tipos de fallos tales como "Sobretensión U_Z " deben subsanarse por medio de un reset. Para este fin, programe una entrada binaria del convertidor como "RESET". Un flanco positivo (señal "0" \rightarrow "1") activa el reset. También es posible generar un reset desconectando y conectando de nuevo la tensión de alimentación.

^{**} Si se conectan las entradas binarias con la alimentación de tensión de 24 V_{CC} X13:8 "VO24", conecte en el convertidor MOVIDRIVE[®] un puente entre X13:7 y X13:9 (DCOM - DGND).

Información de fallos

13.1.2 Información de fallos de MOVIDRIVE® MDR61B1600/2500

Memoria de fallos

La memoria de fallos (P080) guarda los 5 últimos mensajes de fallo (fallos t-0...t-4). Cada vez que se producen más de cinco mensajes de fallo se elimina de la memoria el mensaje más antiguo almacenado. En el momento en que se produce el fallo se memoriza la siguiente información:

Fallo producido · Estado de las entradas/salidas binarias · Estado de funcionamiento del convertidor · Estado del convertidor · Temperatura del radiador · Corriente de salida · Corriente activa · Utilización de la unidad · Tensión de circuito intermedio · Tiempo de conexión · Horas de habilitado.

Respuestas de desconexión

En función del fallo existen 3 posibles reacciones de desconexión. El convertidor permanece bloqueado en estado de fallo:

Desconexión inmediata

La unidad no puede frenar el accionamiento. En caso de anomalía, la etapa final adquiere una alta resistencia y el freno se activa de forma inmediata (DB $\emptyset\emptyset$ "/Freno" = "0").

Reset

Es posible acusar un mensaje de fallo:

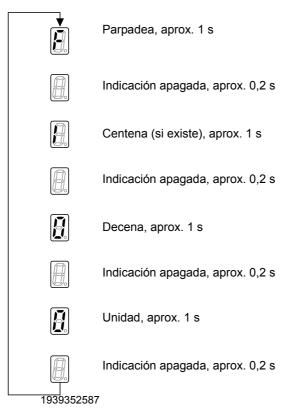
- Desconexión de la alimentación de la fuente de 24 V_{CC}.
 Recomendación: Para el contactor de red K11 deberá mantenerse un tiempo mínimo de desconexión de 10 s.
- Reset mediante bornas de entrada DIØ2, es decir, a través de una entrada binaria
- Reset manual en SHELL (P840 = "Sí" o [Parámetro] / [Reset manual])
- Reset manual con DBG60B
- El Auto-Reset lleva a cabo un máximo de cinco resets con tiempo de reinicio ajustable.

▲ ¡ADVERTENCIA!

Peligro de aplastamiento por el arranque espontáneo del motor debido a reset automático.

Lesiones graves o fatales.

- No utilizar el reset automático en accionamientos cuyo arranque automático pudiera poner en peligro a personas u otros equipos.
- · Efectuar un reset manual.



13.2 Mensajes y lista de fallos

13.2.1 Mensajes y lista de fallos para MOVIDRIVE® MDR61B1600/2500

Mensaje de fallo en el display de 7 segmentos El código de fallo se muestra en el display de 7 segmentos de acuerdo con la siguiente secuencia de indicación (p. ej. código de fallo 100):

Después del reset o cuando el código de fallo tenga de nuevo el valor "0", el display cambia a la indicación de funcionamiento.

Indicación de código de subfallo

El código de subfallo se visualiza en MOVITOOLS[®] MotionStudio (a partir de la versión 4.50) o en la consola de programación DBG60B.

Lista de fallos

	Fallo		Subfallo					
Có- digo	Deno- minación	Respuesta (P)	Código	Denominación	Causa posible	Medida		
00	Sin fallos							
			1	Vigilancia UCE o vigilancia de subtensión del accionamiento	 Cortocircuito en la entrada de la red Potencia de retorno 	 Eliminar el cortocircuito Limitar el recuperador de corriente; es decir, ampliar 		
			6	Vigilancia UCE o vigilancia de subtensión del controlador Gate o sobretensión del convertidor de corriente Fase U	 demasiado elevada Etapa de salida defectuosa Alimentación de corriente Convertidor de corriente Módulo de fase defectuoso Inestabilidad de la tensión 	los tiempos de rampa del convertidor de motor • En caso de etapa de salida defectuosa consultar al servicio de SEW		
			7	Fase V	de alimentación de 24 V o de los 24 V generados			
01	Sobre-	Desconexión		Fase W	Interrupción o cortocircuito			
	corriente	inmediata	9	Fase U y V	en los cables de señal de los módulos de fase			
			10	Fase U y W	los medales de lass			
			11	Fase V y W				
			12	Fase U y V y W				
			13	Tensión de alimentación Convertidor de corriente en estado funcionamiento de red				
			14	Cables de señal MFE defectuosos	Etapa de salida defectuosa			
			0	Fallo a tierra	Fallo a tierra En el cable de alimentación de red En la recuperación de energía	 Eliminar el contacto a tierra Consultar al servicio de SEW 		
03	Fallo a tierra	Desconexión inmediata	1	Contacto a tierra o fallo en el convertidor de corriente	 Fallo a tierra En el cable de alimentación de red En la recuperación de energía Convertidor de corriente defecutoso Cable entre módulo de fase y convertidor de corriente defectuoso 	 Eliminar el contacto a tierra Consultar al servicio de SEW 		
06	Fallo de fase	Desconexión inmediata (+ abrir	0	Tensión de circuito intermedio periódicamente demasiado baja	Fallo de faseCalidad baja de tensión de red	Comprobar la línea de alimentación de redComprobar planificación		
00	de red	contactor	3	Fallo de tensión de red		de la red de alimentación.Comprobar alimentación		
		de red)	4	Fallo de frecuencia de red		(fusibles, contactores)		
		Desconexión inmediata	0	Tensión del circuito intermedio demasiado alta	Tensión del circuito intermedio demasiado alta	Alargar las rampas de retardo del convertidor de motor		
		Desconexión inmediata (+ abrir contactor de red)	5	Subtensión del circuito intermedio	Tensión del circuito intermedio demasiado baja	Comprobar las conexiones de la resistencia de frenado (si existen) Comprobar los datos técnicos de la resistencia de frenado (si existen)		
07	Circuito intermedio	Desconexión inmediata	6	Tensión del circuito intermedio demasiado alta Fase U	Tensión del circuito intermedio demasiado alta	 de frenado (si existen) Comprobar planificación de la red de alimentación. Para las tensiones de red 		
			7	Fase V		> 480 V, ajuste al mismo		
			8	Fase W		tiempo las señales "Habilitado" y "Bloqueo		
		Desconexión inmediata (+ abrir contactor de red)	9	Tensión de circuito intermedio (detección de software)		"Habilitado" y "Bioqueo regulador".		

	Fallo			Subfallo		
Có- digo	Deno- minación	Respuesta (P)	Código	Denominación	Causa posible	Medida
09	Puesta en marcha	Desconexión inmediata (+ abrir contactor de red)	0	Falta puesta en marcha	Aún no se ha puesto en marcha la recuperación de la energía de red en la configuración del hardware.	Volver el estado de entrega en la configuración o ejecutar el juego de datos adecuado.
		,	0	Límite de la temperatura del radiador excedido	Sobrecarga térmica de la recuperación de la energía	Disminuya la carga y/o garantice una ventilación
			3	Temperatura excesiva fuente de alimentación	Medición de temperatura de un módulo de fases defectuosa.	 suficiente. Comprobar ventilador (Módulos de fases o
11	Temperatura excesiva	Desconexión inmediata	6	Temperatura de radiador excesiva o sensor de temperatura defectuosoFase U	(tamaño 7) Inductancias de red sobrecargadas	inductancias) Si se presenta F-11 a pesar de que es evidente que no hay
			7 8	Fase V		sobretemperatura, todo indica que la medición de
			9	Temperatura del radiador del rectificador o inductancia de red de la recuperación de la energía demasiado altas		temperatura de un módulo de fases está averiada. Sustituir módulo de fases (tamaño 7).
17	Fallo de sistema	Desconexión inmediata (+ abrir contactor de red)		Ordenador interno; fallo grave	La electrónica del convertidor presenta un fallo, posiblemente debido al efecto de compatibilidad electromagnética.	 Comprobar la conexión a tierra y los apantallados y, si fuera necesario, mejorarlos. En caso de producirse
		Sin reacción (sólo indicación)	101	Código de fallo no válido solicitado		repetidamente este fallo consulte al servicio de SEW.
		D	300	Fallo interno módulo de software MoviLink Lib		
18	Fallo de	Desconexión inmediata (+ abrir		Fallo interno módulo de software ParameterData		
	sistema	contactor de red)	302	Fallo interno módulo de software ASMOS		
			303	Fallo interno módulo de software Utilities		
		Sin reacción (sólo indicación)	304	Fallo interno módulo de software conversión A/D		
			2	Almacenamiento NV fallo de tiempo de ejecución (Memory Device)	Fallo al acceder a la memoria NV o a la tarjeta de memoria	Copiar parámetros, realizar un ajuste de fábrica, llevar a cabo el
			3	Memoria NV error de importación		reset y establecer de nuevo los parámetros. • En caso de producirse
			4	Memoria NV error de configuración		nuevamente este fallo consultar al servicio de
	Memoria de		5	Memoria NV error de datos		SEW Cambiar la tarjeta de
25	parámetros no volátil	Desconexión inmediata	7	Almacenamiento NV fallo de inicialización		memoria.
			15	La memoria NV utilizada no se puede utilizar con el firmware.		
			17	Almacenamiento NV fallo de tiempo de ejecución (NVMemory)		
			18	Almacenamiento NV fallo de inicialización (Memory Device)		
36	Falta opción	Desconexión inmediata (+ abrir contactor de red)	2	Fallo de zócalo de encoder.	Tarjeta opcional para el registro de valores de medición "MDR" defectuosa	Consultar al servicio de SEW.

	Fallo			Subfallo			
Có- digo		Respuesta (P)	Código	Denominación	Causa posible	Medida	
37	Vigilancia del sistema	Desconexión inmediata (+ abrir contactor de red)	0	Fallo "Vigilancia desbordamiento sistema"	Fallo en la ejecución del software del sistema	Consulte al servicio de SEW	
43	Timeout RS-485	Sin reacción (Sólo visualizar)(P)	0	Tiempo de desbordamiento de comunicación en interface RS485.	Fallo en la comunicación a través de la interface RS485	Comprobar la conexión RS485 (p. ej. variador - PC, variador - DBG60B). Si fuera necesario, consultar al servicio de SEW.	
44	Utilización de la unidad	Desconexión inmediata	0	Fallo utilización de la unidad	Utilización de la unidad (Valor IxT) > 125 %	 Disminuir la salida de potencia Alargar las rampas del convertidor de motor Si no fuera posible poner en práctica los puntos mencionados, utilizar un sistema de recuperación de la energía de red mayor. Reducir la carga 	
45	Inicialización	Desconexión inmediata (+ abrir contactor de red)	1	Offsets de la medición de corriente fuera del rango permitido	 No se han ajustado los parámetros de la EEPROM en la etapa de potencia o éstos se han ajustado incorrectamente. La tarjeta opcional no tiene contacto alguno con el bus del panel posterior. Medición de la corriente defectuosa Fallo de la periferia del procesador 	 Llevar a cabo el ajuste de fábrica. Si no es posible subsanar el fallo, consulte al servicio técnico de SEW. Colocar correctamente la tarjeta opcional. 	
47	Tiempo de desbordamie nto del bus de sistema 1	Sin reacción (Sólo visualizar)(P)	0	Tiempo de desbordamiento del bus de sistema CAN1	Fallo en la comunicación a través del bus de sistema 1.	Comprobar la conexión del bus de sistema.	
80	Prueba RAM	Desconexión inmediata	0	Fallo "Prueba RAM"	Fallo interno de la unidad, memoria RAM defectuosa.	Consultar al servicio de SEW	
	Datos de		1	Fallo de suma de verificación CRC	La electrónica del variador presenta un fallo, posiblemente	Enviar la unidad a reparar.	
94	configuración de la unidad	Desconexión inmediata	11	Datos del módulo de potencia Error de suma de verificación CRC	debido al efecto de compatibilidad electromagnética o a un defecto.		
97	Fallo de copia	Desconexión inmediata	1	Interrupción de las descarga a la unidad de un juego de parámetros.	No se puede leer o escribir en la tarjeta de memoria Fallo en la transferencia de datos.	 Repetir el proceso de copia. Restaure el estado de entrega (P802) y repita el proceso de copia. 	
98	Error CRC	Desconexión inmediata (+ abrir contactor de red)	0	Fallo "CRC a través de flash interno"	Fallo interno de la unidad, memoria Flash defectuosa	Enviar la unidad a reparar.	
			1	Fallo en el contacto de respuesta del contactor de red	 Contactor principal averiado Falta un cable de alimentación Etapa de salida defectuosa Líneas de control defectuosas 	principal Comprobar los cables	
		Desconexión inmediata	4	Los cables de red internos están intercambiados		de control, comprobar la conexión de red Comprobar la conexión	
107	Componentes de red	(+ abrir contactor de red)	5	Falta un cable de alimentación o la derivación de la etapa de salida es defectuosa.	ueieciuusas	del filtro de red	
			6	No se puede realizar una autocomprobación debido al bloqueo del regulador.			

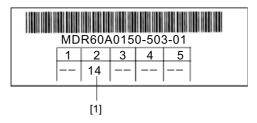
	Fallo		Subfallo			
Có- digo	Deno- minación	Respuesta (P)	Código	Denominación	Causa posible	Medida
124	Condiciones ambientales	Desconexión inmediata	1	Excedida la temperatura ambiental permitida	Temperatura ambiental > 60 °C	Mejorar las condiciones de ventilación y refrigeración, mejorar la alimentación de aire del armario de conexiones; comprobar las esteras de filtrado.
		Desconexión inmediata	1	Resistencia de descarga	Sobrecarga de la resistencia de descarga	Respetar el tiempo de espera de activación / desactivación
		(+ abrir contactor de red)	2	Control de precarga/ descarga de detección de hardware	Variante de control de precarga/descarga incorrecta	 Consultar al servicio de SEW Sustituir el control de precarga/descarga
			3	Acoplamiento de convertidor de corriente PLD-Live	Acoplamiento de convertidor de corriente defectuoso	Consultar al servicio de SEW Sustituir acoplamiento de convertidor de corriente
		Desconexión inmediata	4	Tensión de referencia de acoplamiento de convertidor de corriente	Acoplamiento de convertidor de corriente defectuoso	 Consultar al servicio de SEW Sustituir acoplamiento de convertidor de corriente
			5	Configuración etapas de potencia	Diversos módulos de fases montados en la unidad	 Informar al servicio técnico SEW. Comprobar y sustituir módulos de fases
	Módulo de potencia	Desconexión inmediata (+ abrir contactor de red)	6	Configuración equipo de control	Equipo de control del convertidor de corriente de red o convertidor de corriente de motor incorrecto	Sustituir o asignar correctamente el equipo de control del convertidor de corriente de red y de motor.
		Desconexión inmediata	7	Comunicación del equipo de control de etapa de potencia	No existe comunicación	Comprobar el montaje del equipo de control.
196			8	Comunicación control de precarga/descarga acoplamiento de convertidor de corriente	No existe comunicación	Comprobar cableado Consultar al servicio de SEW
			10	Comunicación equipo de control de etapa de potencia	El acoplamiento de conv. de corriente no es compatible con ningún protocolo	Sustituir acoplamiento de convertidor de corriente
			11	Comunicación equipo de control de etapa de potencia	La comunicación del acoplamiento de conversión de corriente en Power up es defectuosa (error CRC).	Sustituir acoplamiento de convertidor de corriente
			12	Comunicación equipo de control de etapa de potencia	El acoplamiento de convertidor utiliza un protocolo que no corresponde con el equipo de control	Sustituir acoplamiento de convertidor de corriente
			13	Comunicación equipo de control de etapa de potencia	La comunicación del acoplamiento de convertidor en funcionamiento es defectuosa: más de 1 vez por segundo un error CRC.	Sustituir acoplamiento de convertidor de corriente
		Desconexión inmediata (+ abrir contactor de red)	14	Configuración equipo de control	Falta funcionalidad PLD al registro de datos EEPROM tamaño 7.	Sustituir equipo de control
		Desconexión inmediata	15	Error de acoplamiento de convertidor	El procesador del acoplamiento de convertidor ha dado un error interno.	 Si este fallo se vuelve a repetir, consulte al servicio de SEW Sustituir acoplamiento de convertidor de corriente

	Fallo		Subfallo				
Có- digo	Deno- minación	Respuesta (P)	Código	Denominación	Causa posible	Medida	
		Desconexión inmediata	16	Error de acoplamiento de convertidor: Versión PLD incompatible		Sustituir acoplamiento de convertidor de corriente	
		(+ abrir contactor de red)	17	Error de control de precarga/descarga	El procesador del control de precarga/descarga ha dado un error interno	 Si este fallo se vuelve a repetir, consulte al servicio de SEW Sustituir el control de precarga/descarga 	
			18	Error ventilador de circuito intermedio defectuoso	El ventilador del circuito intermedio está averiado.	 Consultar al servicio de SEW Comprobar si el ventilador de reactancia del circuito intermedio está conectado o averiado 	
196	Componente de potencia		19	Comunicación equipo de control de etapa de potencia	La comunicación del acoplamiento de convertidor en funcionamiento es defectuosa: más de 1 vez por segundo error interno.	 En caso de producirse repetidamente este fallo consulte al servicio de SEW. Sustituir acoplamiento de convertidor de corriente 	
			20	Comunicación equipo de control de etapa de potencia	El equipo de control no ha enviado mensajes al acoplamiento de convertidor en mucho tiempo.	 En caso de producirse repetidamente este fallo consulte al servicio de SEW. Sustituir acoplamiento de convertidor de corriente 	
			21	Medición U _z no plausible fase R	Módulo de fase defectuoso	Si este fallo se vuelve a repetir, consulte al servicio de	
			22	Medición U _z no plausible fase S	SE	SEW	
			23	Medición U _z no plausible fase T			
		Desconexión	0	Fallo de red	(fusibles, contact	Comprobar alimentación	
		inmediata (+ abrir	1	Sobretensión de red		(fusibles, contactores)Comprobar planificación	
197	Fallo de red	contactor de red)	2	Subtensión de red		de la red de alimentación	
		Sin reacción (sólo indicación)	3	Calidad de la red, fallo de frecuencia			
		Desconexión inmediata (+ abrir contactor de red)	1	Proceso de precarga interrumpido (tiempo excedido)	El circuito intermedio no se puede cargar.	Precarga sobrecargada Capacidad de circuito intermedio conectada excesiva Cortocircuito en circuito	
199	Carga del circuito intermedio	Desconexión inmediata	3	Proceso de carga con valor de consigna de tensión interrumpido (tiempo excedido)		intermedio, comprobar conexión de circuito intermedio en varias unidades	
		Desconexión inmediata (+ abrir contactor de red)	4	Proceso de precarga interrumpido			

13.3 Servicio técnico electrónico de SEW

13.3.1 Envío para reparación

En el caso de que no fuera posible subsanar un fallo, póngase en contacto con el servicio técnico electrónico de SEW-EURODRIVE (\rightarrow "Servicio y piezas de repuesto").


Cuando contacte con el servicio técnico electrónico de SEW indique siempre los números de la etiqueta de estado a fin de que el servicio pueda ser más efectivo.

Cuando envíe la unidad para su reparación, indique lo siguiente:

- Número de serie (→ placa de características)
- · Designación de modelo
- · Números de la etiqueta de estado
- Descripción breve de la aplicación (accionamiento, control a través de bornas o en serie)
- Componentes conectados (convertidor, etc.)
- Tipo de fallo
- · Circunstancias paralelas
- · Suposiciones personales
- Sucesos anormales que hayan ocurrido de forma anterior al fallo, etc.

13.3.2 Etiqueta de estado

Los sistemas de recuperación de la energía de red MOVIDRIVE[®] MDR60A están provistos de una etiqueta de estado colocada en el lateral del aparato.

1877052683

[1] = Estado de hardware

Los sistemas de recuperación de la energía de red MOVIDRIVE[®] MDR61B están provistos de una etiqueta de estado colocada en la cubierta frontal superior.

4092426507

Introducción (MDR60A1320-503-00)

Acerca de estas instrucciones de funcionamiento

14 Introducción (MDR60A1320-503-00)

NOTA

Los siguientes capítulos son únicamente válidos para el sistema de recuperación de energía de red MOVIDRIVE® MDR60A1320-503-00.

14.1 Acerca de estas instrucciones de funcionamiento

- Las presentes instrucciones de funcionamiento sirven para realizar un trabajo seguro en y con el sistema de recuperación de energía de red MOVIDRIVE® MDR60A1320-503-00. Contiene indicaciones de seguridad a tener en cuenta e información necesaria para el funcionamiento libre de fallos sacando a la vez beneficio de todas las ventajas del aparato.
- Todas las personas que trabajen en y con los sistemas de recuperación de la energía de red MOVIDRIVE® MDR60A1320-503-00, deben tener disponibles en su trabajo las instrucciones de funcionamiento y deben asimismo tener en cuenta los datos e indicaciones que para ellos sean de relevancia.
- Las instrucciones de funcionamiento deben estar siempre completas y ser perfectamente legibles.

14.2 Términos utilizados

Sistema de recuperación de energía de red

En adelante se utilizará el término "sistema de recuperación de la energía de red" para designar al sistema de recuperación de la energía de red MOVIDRIVE® MDR60A1320-503-00.

Regulador del accionamiento

En adelante se utilizará el término "regulador del accionamiento" para designar al correspondiente convertidor de frecuencia utilizado en combinación con el sistema de recuperación de la energía de red.

Sistema de accionamiento

En adelante se utilizará el término "sistema de accionamiento" para designar a los sistemas de accionamiento con sistemas de recuperación de la energía de red, reguladores del accionamiento y otros componentes de accionamiento.

14.3 Normativa legal

14.3.1 Identificación

· Placa de características

El sistema de recuperación de la energía de red MOVIDRIVE[®] MDR60A1320-503-00 está claramente identificado por el contenido de la placa de características.

Norma CE

En conformidad con la directiva CE relativa a "baja tensión".

Fabricante

SEW-EURODRIVE GmbH & Co KG, Ernst-Blickle-Straße 42, 76646 Bruchsal.

14.3.2 Uso indicado

- Utilice el sistema de recuperación de energía de red MOVIDRIVE[®] MDR60A1320-503-00 exclusivamente bajo las condiciones de aplicación descritas en estas instrucciones.
- Los sistemas de recuperación de la energía de red MOVIDRIVE[®] MDR60A1320-503-00 son componentes
 - para la alimentación y recuperación de energía eléctrica
 - para instalar en una máquina
 - para el montaje de una máquina junto con otros componentes
- Los sistemas de recuperación de energía de red MOVIDRIVE[®] MDR60A1320-503-00
 - son equipos eléctricos para la instalación en armarios de conexiones o similares recintos cerrados para equipos
 - cumplen los requisitos de la directiva CE "Máquinas" en materia de protección
 - no son aparatos domésticos sino componentes diseñados exclusivamente para uso industrial.
- Los sistemas de accionamiento con sistema de recuperación de la energía de red MOVIDRIVE[®] MDR60A1320-503-00 cumplen la directiva CE en materia de "Compatibilidad electromagnética" en el caso en que hayan sido instalados siguiendo los requisitos para sistemas de accionamiento CE típico. Son utilizables
 - en redes públicas y privadas
 - en la industria así como en el área residencial y comercial
- El usuario asume la responsabilidad del cumplimiento de las directivas CE durante la utilización de la máquina.

Normativa legal

14.3.3 Responsabilidad

- En el momento de la impresión de las presentes instrucciones de funcionamiento, las informaciones, datos e instrucciones incluidas se encontraban en su versión más reciente. Cualquier reclamación de modificaciones en sistemas de recuperación de la energía de red ya suministrados basada en los datos, figuras y descripciones incluidas en estas instrucciones no tendrá validez.
- Las instrucciones técnicas de proceso y fragmentos de esquemas de conexiones presentados en estas instrucciones de funcionamiento son sugerencias cuya transferencia a cada aplicación concreta debe ser verificada. SEW-EURODRIVE GmbH & Co KG declina toda responsabilidad sobre la idoneidad de los procesos y ejemplos de conexiones especificados.
- · Asimismo se declina toda responsabilidad por daños y fallos ocasionados por:
 - no respetar las instrucciones de funcionamiento
 - cambios no autorizados en el sistema de recuperación de la energía de red
 - fallo de manejo
 - trabajos inadecuados en y con el sistema de recuperación de la energía de red

14.3.4 Garantía

- Condiciones de la garantía: consulte las condiciones de venta y suministro de SEW-EURODRIVE GmbH & Co KG.
- Comunicar la reclamación de la garantía de forma inmediata tras constatar un defecto o fallo.
- La garantía queda anulada en todos aquellos casos en los que no exista un derecho de reclamación de responsabilidad.

14.3.5 Tratamiento de residuos

Material	Reciclar	Eliminar
Metal	X	_
Plástico	X	-
Tarjetas con componentes electrónicos	_	X

15 Notas de seguridad (MDR60A1320-503-00)

15.1 Indicaciones generales

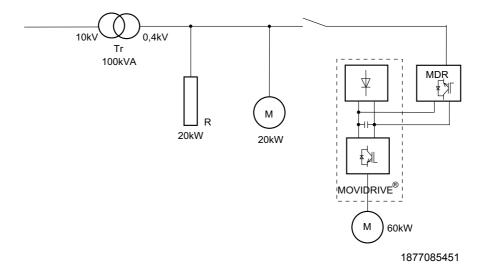
Esta información debe ofrecer a los montadores y usuarios de una instalación las indicaciones acerca de las características especiales y normas en relación al sistema de recuperación de la energía de red MOVIDRIVE[®] MDR60A1320-503-00. No se garantiza la integridad de estas notas.

15.1.1 Particularidades en comparación con el freno chopper

A diferencia de la resistencia de frenado, el sistema de recuperación de la energía de red no ofrece un drenaje constante sino que depende de las condiciones del momento. Los saltos de conmutación o las fluctuaciones de tensión en la red influyen en la corriente de retorno de la unidad. A fin de poder recuperar la potencia solicitada, la corriente de retorno ha de aumentar correspondiendo a los saltos cortos en la tensión de red. Si la tensión de red se reduce durante un largo intervalo, la potencia máxima de retorno se reduce en consecuencia. Si falla sólo una de las fases, el aparato puede continuar su funcionamiento y la corriente en las dos líneas restantes aumenta en un factor de 1,5.

15.1.2 Longitud de la conexión CC

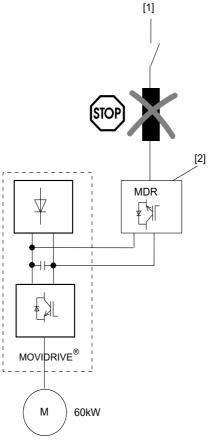
- En la medida de lo posible, instale el convertidor de frecuencia y el sistema de recuperación de la energía de red uno al lado del otro.
- La longitud de cable máxima admisible entre el convertidor de frecuencia y el sistema de recuperación de la corriente de red es de 5 m.
- Tienda los cables juntos entre sí.



15.1.3 Funcionamiento en un transformador

Si en una sección de la red, además de la recuperación de energía se encuentran unos pocos elementos consumidores operativos, el transformador deberá ser capaz de transmitir la energía no utilizada en esta sección de vuelta al siguiente nivel de tensión sin que la tensión en la sección aumente hasta un nivel inadmisible. Para ello, la potencia nominal (aparente) del transformador ha de ser por lo menos 1,5 veces mayor que la potencia (efectiva) devuelta por la sección a fin de transmitir también las sobreoscilaciones y los componentes reactivos de las corrientes.

Dichas condiciones se dan en la sección de red de la siguiente figura al desconectar los restantes elementos consumidores. Si la potencia devuelta es comparable a la potencia nominal del transformador, el valor u_K del transformador debe ser suficientemente pequeño (máx. 6 %) para limitar el aumento de tensión en la sección de red.


El funcionamiento de aparatos MOVIDRIVE®-MDR60A1320-503-00 en combinación con transformadores de regulación con un elevado u_K de 10 - 20 % (p. ej. en la versión como motor de anillos colectores con freno fijo) es únicamente admisible cuando la relación entre la potencia de retorno y la potencia nominal es mucho menor.

15.1.4 Posición de la inductancia de conmutación

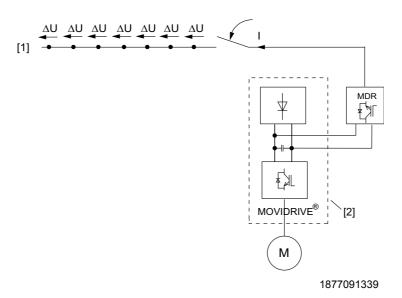
La inductancia de conmutación necesaria para el regulador del accionamiento [2] está integrada en el sistema de recuperación de la energía de red. No está permitido preconectar una inductancia de conmutación adicional. El sistema de recuperación de la energía de red debe conectarse directamente a la red [1] (\rightarrow figura siguiente).

1877088395

Si no se observa esta condición, la inductancia puede impedir por un lado la sincronización con la red de alimentación y por el otro, el aumento de tensión en la reactancia al desconectar cuando fluye la corriente puede originar daños en el sistema de recuperación de la energía de red.

iMPORTANTE!

- Lo mismo se aplica cuando se instalan inductancias adicionales en el circuito de entrada. Está también prohibido.
- ¡Las sobretensiones pueden ocasionar la destrucción del regulador del accionamiento conectado y/o del sistema de recuperación de energía de red y del resto de cargas!


15.1.5 Resistencias de línea y de contacto

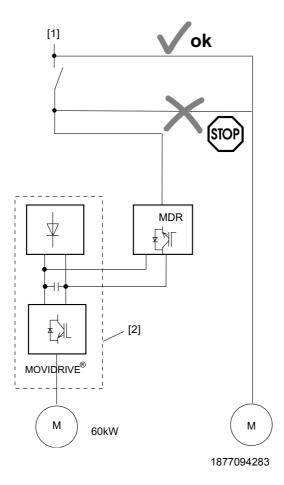
Indicaciones generales

Los datos acerca de la intensidad de corriente admisible de líneas están referidas a los conductores de cobre comúnmente utilizados. Debido a la mayor resistencia específica, es necesario utilizar secciones mayores en el caso de los conductores de aluminio.

Para ambos materiales conductores es necesario procurar que los puntos de conexión presenten la menor resistencia posible y que el número de estos se limite al mínimo necesario.

Tal y como se muestra en la siguiente figura, demasiadas bornas o bornas con demasiada resistencia (D U) pueden ocasionar una caída de tensión inadmisible durante el funcionamiento accionador y un aumento de tensión inadmisible durante el funcionamiento de retorno.

Partiendo de una red estable [1] con una tensión nominal de p. ej. 400 V en la que fluye una corriente de retorno de 80 A, en un punto de conexión por borna efectuado de forma incorrecta de 100 m Ω desciende la tensión en 8 V. Un punto de conexión por borna efectuado de forma correcta ofrece una resistencia de contacto de aprox. 1 m Ω . En el caso de 7 puntos de conexión por borna existirá en el conmutador de red una tensión de 456 V durante el funcionamiento de retorno.


iIMPORTANTE!

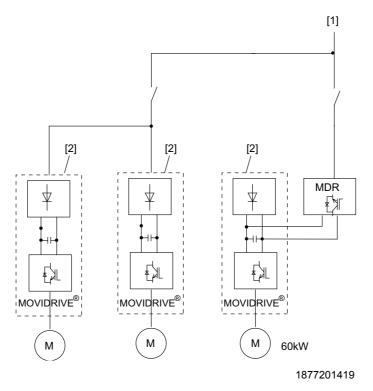
Las sobretensiones pueden ocasionar la destrucción del regulador del accionamiento [2] conectado y/o del sistema de recuperación de energía de red y del resto de cargas.

15.1.6 Conexión de otros elementos consumidores

La conexión de elementos consumidores (p. ej. ventiladores para armarios de conexiones o climatizadores) paralela al regulador del accionamiento [2] o al sistema de recuperación de energía de red antes de un conmutador de potencia común (→ figura siguiente) no está permitida. Esto es debido a que en el caso de activación del conmutador, desaparece la conexión con la red [1] que representa al receptor de energía y al elemento sincronizador para la unidad de alimentación y retorno. Los IGBTs conmutan entonces la tensión del circuito intermedio directamente hacia los elementos consumidores. La tensión de "red" que se ajusta de forma aproximadamente rectangular hace circular una corriente por los elementos consumidores cuya amplitud y forma dependen de sus impedancias. Si el consumo de corriente de los elementos consumidores es muy pequeño, la tensión del circuito intermedio aumenta durante el funcionamiento generador y con ella la tensión de salida de los sistemas de recuperación de energía de red. Esta elevada tensión puede causar daños en todos los aparatos conectados.

ilmportante!

Las sobretensiones pueden ocasionar la destrucción del regulador del accionamiento [2] conectado y/o del sistema de recuperación de energía de red y del resto de cargas.



Indicaciones generales

i

NOTA

Lo mismo es válido para la estructura mostrada en la siguiente figura. ¡Incluso en una instalación de este tipo es necesario disponer de al menos un conmutador individual en cada uno de los circuitos de corriente de retorno!

- [1] Red de alimentación
- [2] Regulador del accionamiento

16 Datos técnicos (MDR60A1320-503-00)

16.1 Características

- · Tamaño pequeño y compacto
- Alimentación de los reguladores del accionamiento
- · La potencia de frenado de los reguladores del accionamiento retorna a la red
- · Potencia nominal 160 kW
- · Potencia constante 200 kW
- Potencia máxima motor 240 kW / generadora 210 kW para 60 s
- La conexión de varios reguladores del accionamiento al circuito intermedio es posible
- Etapa de potencia con alto grado de rendimiento y seguridad de funcionamiento
- Autosincronización
- · Protección contra sobrecarga en el funcionamiento de retorno
- Vigilancia de la tensión de red, de la orientación del campo giratorio y de la temperatura
- Ejecución de procesos de frenado altamente dinámicos
- Puesta en marcha sencilla al no ser necesario ningún programa o ajuste

16.2 Datos técnicos generales

MOVIDRIVE® MDR60A1320-503-00	
Resistencia a interferencias	Conforme a EN 61000-6-1 y EN 61000-6-2
Emisión de interferencias con instalación conforme a la compatibilidad electromagnética	Conforme a EN 61000-6-4 con NF300-503
Temperatura ambiente $\vartheta_{\sf U}$ Desclasificación de temperatura ambiente	0 °C+40 °C Reducción I _N : 3 % I _N por K hasta máx. 55 °C
Clase climática	EN 60721-3-3, clase 3K3
Temperatura de almacenamiento ¹⁾ ϑ_L	-25 °C+55 °C (conforme a EN 60721-3-3, clase 3K3)
Tipo de refrigeración (DIN 51751)	Refrigeración externa (Ventilador regulado por la temperatura, umbral de respuesta 45 °C)
Tipo de protección	IP20
Modo de funcionamiento	Funcionamiento continuo (EN 60149-1-1 y 1-3)
Categoría de sobretensión	III según IEC 60664-1 (VDE 0110-1)
Clase de contaminación	2 según IEC 60664-1 (VDE 0110-1)
Altura de emplazamiento	h ≤ 1000 m: Sin limitaciones De 1000 m hasta máx. 4000 m: Reducción I _N : 0,5 % por 100 m

¹⁾ En caso de almacenamiento prolongado, conectar la unidad cada 2 años durante al menos 5 min a la tensión de red puesto que de lo contrario podría reducirse la vida útil de la unidad.

Datos técnicos (MDR60A1320-503-00)

Datos de medición

16.3 Datos de medición

MOVIDRIVE® MDR60A1320-503-00		
Rango nominal de la tensión de red entre fases	U_N	$380 \text{ V} \le \text{U}_{\text{N}} \le 500 \text{ V}$
Tolerancia de la tensión de red entre fases	U_N	342 V ≤ U _N ≤ 550 V
Frecuencia de red	f_N	40 Hz 60 Hz ± 10 %
Capacidad de sobrecarga		→ Cap. "Intensidad de corriente admisible"
Grado de rendimiento	η	aprox. 98 % (2 % perdidas térmicas)
Factor de potencia	G	≈ 0.7 - 0.95
Consumo de aire de refrigeración		700 m ³ /h
Reducción de potencia	ϑυ	40 °C 55 °C \rightarrow 3 %/K 1000 m sobre el nivel del mar < h \leq 4000 m sobre el nivel del mar \rightarrow 5 %/1000 m

16.4 Corriente máxima admisible

Tipo de aparato		Funcionamien	to accionador	Funcionamier	nto de frenado
		Diodos	libres	Módulo	os IGBT
		I _{eff P}	hase	l _{eff F}	Phase
		100 % 1 min en 10 min		100 %	1 min en 10 min
MDR60A 1320-5	03-00	260 A	360 A	260 A	330 A

NOTA

- Al igual que la entrada de un regulador de accionamiento, el lado de alimentación del MOVIDRIVE[®] MDR60A1320-503-00 no está protegido contra sobrecargas. Durante el dimensionado ponga especial cuidado en que la corriente máxima de entrada CC del regulador del accionamiento (incl. factor de sobrecarga) no sobrepase la corriente máxima de alimentación del recuperador de corriente. Si se da este caso, deberá ajustarse el límite de corriente motriz programable del regulador del accionamiento al valor de corriente del recuperador de corriente. En este caso debe también tener en cuenta el factor de sobrecarga del regulador del accionamiento.
- Durante la determinación de la potencia de retorno, tenga en cuenta que la potencia real de retorno actual siempre depende de la tensión real de red disponible.

16.5 Fusibles y secciones de cable

La conexión de red del sistema de recuperación de energía de red tiene lugar a través de las bornas L1, L2 y L3 en la reactancia de conmutación y en la puesta a tierra en el radiador. El fusible de red debe ser dimensionado de acuerdo a la intensidad de corriente admisible en la línea de conexión permitida. Los fabricantes indicados son únicamente una recomendación, por supuesto son adecuados otros tipos comparables de diferentes fabricantes (p. ej. Jean Müller, Ferraz, Bussmann).

16.5.1 Fusibles preconectados

Antes del sistema de recuperación de la energía de red es preciso conectar los fusibles semiconductores indicados en la siguiente tabla.

Tipo de unidad	Máx. fusible previo	Conexión / sección máx. del cable de alimentación
MOVIDRIVE® MDR60A1320-503-00	Siba 20 713 32.500 500 A _{CA} / 1100 V _{CA} / 110 mm NH01	Perno de conexión M10 / 185 mm ²

16.5.2 Fusibles utilizados en el aparato

En el sistema de recuperación de la energía de red han sido conectados los fusibles semiconductores indicados en la siguiente tabla.

Tipo de unidad	Fusibles de corriente continua (fusibles rápidos de semiconductores)	Conexión / sección máx. del cable de alimentación
MOVIDRIVE® MDR60A1320-503-00	Siba 20 713 32.630 630 A _{CA} / 1100 V _{CA} / 110 mm NH01	Perno de conexión M10 / 185 mm ²

¡IMPORTANTE!

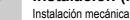
Cuando los fusibles se activen, póngase imprescindiblemente en contacto con SEW-EURODRIVE ya que pudiera ser que se hayan activado otras medidas de protección en el aparato. Cuando reemplace los fusibles internos tenga en cuenta que sólo está permitido utilizar los tipos originales.

A ¡ADVERTENCIA!

Electrocución por elementos bajo tensión.

Lesiones graves o fatales.

 ¡El recambio de fusibles debe realizarse exclusivamente con la alimentación desconectada!


16.5.3 Filtro antiparasitario

A fin de cumplir la normativa CEM debe conectarse un filtro antiparasitario de categoría A antes del MOVIDRIVE $^{\circledR}$ MDR60A 1320-503-00.

Tipo de aparato	Descripción para realizar el pedido del filtro antiparasitario	
MOVIDRIVE® MDR60A1320-503-00	NF300-503	

Instalación (MDR60A1320-503-00)

17 Instalación (MDR60A1320-503-00)

17.1 Instalación mecánica

17.1.1 Notas importantes

- Utilice los sistemas de recuperación de la energía de red exclusivamente como componentes instalables.
- Tenga en cuenta el espacio libre para el montaje:
 - Es posible montar varios sistemas de recuperación de la energía de red, colocados uno al lado del otro, en un armario de conexiones sin espacio entre ellos.
 - Es preciso mantener un espacio lateral con otros componentes y con las paredes del armario de conexiones no inferior a los 70 mm.
 - Prever un espacio libre de mín. 150 mm por debajo y por encima.
 - Monte los sistemas de recuperación de la energía de red juntos entre si para reducir en lo posible la longitud de los cables.
- Compruebe que la entrada de aire de refrigeración y la salida de aire se encuentren libres.
- En el caso de existir impurezas (polvo, pelusas, gases agresivos) en el aire de refrigeración que pudieran afectar al funcionamiento del sistema de recuperación de la energía de red:
 - Adopte las medidas necesarias para evitarlo, p. ej. conducción separada de aire, instalación de filtros, limpieza regular, etc.
- No superar el rango de temperatura ambiente permitido.

17.1.2 Posición de montaje prescrita

El sistema de recuperación de energía de red MOVIDRIVE® MDR60A1320-503-00 ha sido diseñado para el montaje vertical (±15°). Debe utilizarse una superficie lisa como lugar para el montaje, sin necesidad de utilizar espaciadores o similares. Durante el montaje del aparato en armarios de conexiones, tenga en cuenta que los aparatos deben atornillarse directamente en la superficie de montaje sin utilizar espaciadores o elementos similares y que la evacuación del calor en el armario de conexiones es suficiente. Esta forma de montaje es necesaria para garantizar la circulación de aire frío. Se debe contar con una pérdida de potencia de aprox. 2 % de la potencia nominal máxima del aparato. La temperatura del aire junto al aparato no debe sobrepasar los 40 °C. No está permitido obstaculizar mediante materiales de montaje tales como canales para cables u otros aparatos las aberturas para la entrada y salida del aire situadas en la parte superior e inferior del aparato.

17.2 Indicaciones para la instalación eléctrica

17.2.1 Protección de las personas

▲ ¡ADVERTENCIA!

Electrocución por piezas bajo tensión.

Lesiones graves o fatales.

- En las bornas del circuito intermedio del sistema de recuperación de la energía de red MOVIDRIVE[®] MDR60A 1320-503-00 se presentan altas tensiones peligrosas incluso varios minutos después de desconectar la tensión de alimentación. El tiempo que debe transcurrir hasta que dicha tensión disminuya hasta un valor que no suponga un peligro, depende del regulador del accionamiento utilizado y debe ser respetado. Encontrará los tiempos exactos en la información suministrada por el fabricante del regulador del accionamiento.
- ¡El recambio de fusibles defectuosos debe realizarse exclusivamente con la alimentación desconectada y deben utilizarse sólo los tipos indicados!

17.2.2 Protección del sistema de recuperación de la energía de red

iIMPORTANTE!

El sistema de recuperación de la energía de red MOVIDRIVE[®] MDR60A1320-503-00 contienen componentes sensibles a descargas electrostáticas (ESDS).

Durante el trabajo en las conexiones, el personal debe observar las medidas indicadas por la norma internacional IEC747-1. Esto implica la liberación de la carga electrostática antes de iniciar el trabajo.

Realice una descarga tocando el tornillo de fijación de la puesta a tierra o cualquier otra superficie metálica dentro del armario conectada a tierra.

17.2.3 Formas de red y condiciones para la red

¡Tenga en cuenta las limitaciones de cada forma de red! Si desea utilizar sistemas de recuperación de la energía de red en alguna red que no esté incluida en la siguiente tabla, póngase en contacto con SEW-EURODRIVE.

Forma de red de acuerdo a VDE	Funcionamiento del sistema de recuperación de la energía de red
Con punto neutro conectado a tierra	Permitido sin limitaciones
Con punto neutro aislado	Prohibido
Con conductor exterior conectado a tierra	Prohibido

Instalación (MDR60A1320-503-00) Indicaciones para la instalación eléctrica

17.2.4 Especificaciones para las líneas utilizadas

- Las líneas utilizadas deben satisfacer las especificaciones requeridas en el lugar de la instalación.
- Deben respetarse las indicaciones acerca de la sección mínima de las líneas de puesta a tierra.
- · La eficacia de una línea apantallada se determina a partir de
 - una buena conexión de la pantalla.
 - una baja impedancia.
- Utilice sólo pantallas de malla de cobre estañado o niquelado.
 - El grado de recubrimiento de la pantalla de malla debe ser de 70 % hasta 80 % con un ángulo de recubrimiento de 90°.
- Proteja las líneas de alimentación del sistema de recuperación de la energía de red con los fusibles de protección de líneas preindicados.

17.3 Conexión eléctrica

Tras retirar los tornillos de cabeza moleteada laterales y extraer la tapa de la carcasa es posible acceder al área de conexiones del MOVIDRIVE® MDR60A1320-503-00. Las líneas de alimentación se introducen a través de las atornilladuras montadas en la brida.

¡ATENCIÓN!

¡Preste especial atención para no dañar o arrancar las líneas que van conectadas a la placa electrónica del display cuando retire la tapa!

17.3.1 Conexión de potencia

Protección:

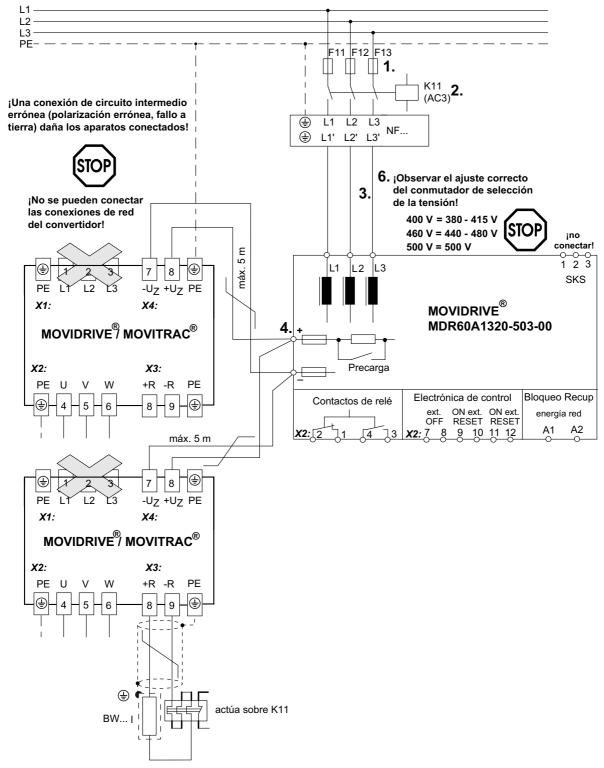
- Tenga en cuenta la caída de tensión bajo carga al seleccionar la sección del cable.
- Protección de las líneas y del sistema de recuperación de la energía de red en la parte de tensión alterna (L1, L2, L3):
 - Mediante fusibles semiconductores de protección comunes.
 - Tanto los fusibles como los portafusibles y seccionadores de fusibles utilizados en instalaciones de acuerdo a UL han de contar con la aprobación UL.
 - Las tensiones de medición de los fusibles han de ser dimensionadas de acuerdo a la tensión de red in situ.
- Protección del sistema de recuperación de la energía de red en la parte de tensión continua (+UG, -UG):
 - Los fusibles correspondientes han sido integrados en el aparato.

Conexión:

- Todas las conexiones deben ser tan cortas y de baja inducción como sea posible.
- A fin de cumplir la normativa CEM (conforme a normas existentes como VDE 0160 y EN 61800-5-1), utilice líneas apantalladas.
- Conecte las líneas de red a las bornas L1, L2 y L3 del sistema de recuperación de la energía de red. La conexión ha de ser siempre trifásica.
- Debe guardarse una determinada secuencia de fases en las conexiones de red de la etapa de potencia (campo de giro hacia la derecha). El aparato dispone de un mecanismo de vigilancia de la secuencia de fases. En el caso en que el mecanismo de vigilancia de la secuencia de fases detecte un campo de giro incorrecto, se mostrará en el aparato el mensaje de error "campo de giro incorrecto" o "fallo de fase" mediante los LEDs (capítulo "Funcionamiento y servicio" (→ pág. 197)). En este caso será necesario intercambiar 2 fases de red de la conexión de potencia.
- Conecte las líneas para la conexión de circuito intermedio de los reguladores del accionamiento y del sistema de recuperación de la energía de red a las bornas +UG / -UG. ¡Preste mucha atención a la polaridad correcta!
- Mantenga los pares de apriete indicados y utilice una segunda llave para absorber el par de apriete.
- Conecte la línea de protección de la línea de alimentación al tornillo de toma de tierra situado en la parte inferior de la unidad.

iIMPORTANTE!

¡Intercambiar o conectar incorrectamente el + (positivo) y el - (negativo) a las bornas puede ocasionar la destrucción del regulador del accionamiento y del sistema de recuperación de energía de red!



Esquema de conexiones

El siguiente esquema de conexiones es un ejemplo de circuito. Aquellas particularidades derivadas de la aplicación, p. ej. la conexión de un PLC, pueden requerir cambios en la conexión de los contactos X2:1 ... X2:12.

1. ... 6. → Apartado "Notas sobre el esquema de conexiones"

1877205131

Notas sobre el esquema de conexiones

- 1. Protección por fusibles conforme a estas instrucciones de funcionamiento.
- 2. A continuación del contactor de red no está permitido conectar ningún otro elemento consumidor además del sistema de recuperación de la energía de red.

iEn ca

iMPORTANTE!

¡En caso de no cumplir esta indicación existe el riesgo de que se produzca un aumento peligroso de la tensión al desconectarse la red durante la recuperación de energía y que sufran daños los elementos consumidores adicionales situados en la parte de red desconectada e incluso el regulador del accionamiento y la unidad de retorno!

- 3. Sección de cable conforme a las normas VDE vigentes.
- 4. En este caso es posible conectar uno o varios reguladores del accionamiento (incluso de diferentes potencias). ¡Al conectar varios reguladores del accionamiento, las líneas de conexión CC deben ser asimismo tan cortas como sea posible! Tienda las líneas tan juntas entre sí como sea posible.
- Los pares de bornas X2:9 y X2:10 así como X2:11 y X2:12 ofrecen la posibilidad de contar con un "ACTIVADO" y un "RESET" externos (→ Apartado "Asignación de bornas en la regleta de bornas de control X2"):
 - X2:9 y X2:10: contacto libre de potencial (contacto breve)
 - X2:11 y X2:12: pulso positivo (DC 12 24 V); realizable p. ej. mediante control del PLC (borna 11 +, borna 12 -)
- 6. Mediante el conmutador de selección de tensión ha de seleccionarse el valor de la tensión de la red conectada **previo a la activación de la tensión de red** (→ véase la siguiente tabla).

Posición del conmutador de selección de tensión	Valor de la tensión de la red conectada
400 V	380 V _{CA} - 415 V _{CA} ± 10 %
460 V	440 V _{CA} - 480 V _{CA} ± 10 %
500 V	500 V _{CA} ± 10 %

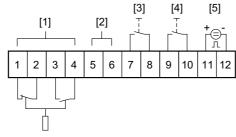
iMPORTANTE!

- Antes de activar la tensión de red compruebe si la posición del conmutador de selección de la tensión coincide con la tensión de red. ¡En el caso en que se haya ajustado el valor equivocado se ocasionaran daños en el aparato!
- El conmutador de selección de tensión se encuentra dentro del aparato y puede ajustarse después de retirar la placa frontal. El ajuste de fábrica es de 500 V_{CA}. Apague el aparato antes de abrirlo.
- El conmutador de selección de tensión no debe ser accionado cuando se encuentre bajo tensión.

Asimismo existe el riesgo de averías en caso de uso incorrecto. El límite de tolerancia en el uso incorrecto se sitúa en un tiempo < 1 min (cuando el aparato está frío).

Instalación (MDR60A1320-503-00)

17.3.2 Líneas de control


- Conecte las líneas de control a la regleta de bornas de control X2 (→ apartado "Asignación de bornas en la regleta de bornas de control X2").
- No tienda las líneas de control paralelas a líneas de motor con riesgo de fallo.
- Colocar la pantalla de las líneas de control en los prensaestopas de metal con una gran superficie de contacto.

17.3.3 Conexiones de control

La regleta de bornas de control X2 se encuentra en la parte inferior de la unidad. El bloque de bornas es desmontable y por tanto de cableado sencillo.

Es posible conectar p. ej. mensajes de habilitación del funcionamiento o un fallo de alimentación externos al aparato a la regleta de bornas de control X2 mediante relés. Además mediante la regleta de bornas de control X2 es posible realizar un RESET externo o funciones de conmutación y enlazar con el convertidor de frecuencia.

17.3.4 Asignación de bornas en la regleta de bornas de control X2

1877276811

- [1] X2:1 ... X2:4 relés de fallo de alimentación
- [2] X2:5, X2:6 utilizados internamente para la vigilancia de la temperatura. ¡No se permite la conexión de líneas!
- [3] X2:7, X2:8 OFF externo
- [4] X2:9, X2:10 no asignado
- [5] X2:11, X2:12 = ON / RESET

NOTA

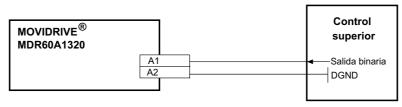
SEW-EURODRIVE recomienda utilizar preferentemente la conexión de reset X2:11 y X2:12.

iMPORTANTE!

¡No aplique ninguna tensión externa a las bornas X2:5 hasta X2:10, de lo contrario el aparato puede resultar dañado!

Borna	Función	Descripción		
X2:1 contacto normalmente cerrado				
X2:2 contacto normalmente cerrado	Contactos de relé libres de	Mensaje de fallo en la alimentación, potencia de conmutación de los contactos del relé:		
X2:3 contacto normalmente abierto	potencial ^{1) 2)}	• 30 V _{CC} 3A • 230 V _{CA} 5A		
X2:4 contacto normalmente abierto				
X2:5	Utilizado internamente para la			
X2:6	vigilancia de la temperatura			
X2:7	Pulsador de DESACTIVADO	Para desactivar la reguneración de la energía		
X2:8	ruisadoi de DESACTIVADO	Para desactivar la recuperación de la energía		
X2:9	Pulsador de ACTIVADO /			
X2:10	Reset ³⁾			
X2:11 (+24 V)	Entrada de tensión externa	Para activar la recuperación de la energía de red o		
X2:12 (0 V)	בוווומטמ עב נכווסוטוו כאנכווומ	confirmación de errores		

1. El relé actúa


- cuando se dispone de tensión de alimentación
- cuando la precarga de los condensadores del circuito intermedio está completa
- cuando no existe ningún fallo de alimentación

2. El relé se abre

- con un comando de OFF a través de las bornas 7 y 8
- en caso de una mensaje de fallo
- En el caso del inicio automático no es necesario accionar el pulsador de ACTIVADO. Consulte el capítulo "Configuración" (→ pág. 193).

17.3.5 Asignación de bornas de la entrada inhibidora A1/A2

Borna	Función	Descripción
A1	Entrada inhibidora de 24 V	Tensión de control para el bloqueo de la ruta de la
A2	DGND	recuperación de la energía de red

4066532107

Instalación (MDR60A1320-503-00)

Instalación en un sistema de accionamiento típico CE

17.4 Instalación en un sistema de accionamiento típico CE

17.4.1 Indicaciones generales

- El usuario asume la responsabilidad del cumplimiento de las directivas CE durante la utilización de la máquina.
 - Si respeta las siguientes medidas puede estar seguro de que no aparecerán ninguno de los problemas de compatibilidad electromagnética ocasionados por el sistema de recuperación de la energía de red y que se cumple la directiva CE o la regulación CEM.
 - Si se encuentran en funcionamiento en las inmediaciones del sistema de recuperación de la energía de red unidades que no satisfagan el requisito de CE en lo concerniente a la inmunidad a interferencias EN 500082-2 pueden verse afectados de forma electromagnética por el sistema de recuperación de la energía de red.

17.4.2 Estructura

- Conectar el sistema de recuperación de la energía de red y el filtro antiparasitario a la superficie de montaje conectada a tierra mediante una gran superficie de contacto:
 - Las placas de montaje con superficie conductora (acero galvanizado o inoxidable) permiten un contacto duradero.
 - Las placas lacadas no son adecuadas para una instalación conforme a las medidas de compatibilidad electromagnética.
- Si utiliza varias placas de montaje:
 - Conecte las placas de montaje mediante conductores con una superficie extensa (p. ej. mediante cintas de cobre).
- Tienda los cables de potencia y las líneas de control por separado.
- Tienda las líneas tan cerca del potencial de referencia como sea posible. Las líneas sueltas funcionan como antenas.

17.4.3 Filtrado

 Utilice únicamente los filtros de supresión de ruidos adecuados al sistema de recuperación de la energía de red. Los filtros de supresión de ruidos reducen los factores de perturbación de alta frecuencia no admisibles hasta un valor admisible.

Instalación en un sistema de accionamiento típico CE

17.4.4 Apantallado

- Los prensaestopas metálicos garantizan una conexión extensa de la pantalla con la carcasa.
- En contactores y bornas en las líneas apantalladas
 - Conectar las pantallas de las líneas allí conectadas y conectar asimismo a la placa de montaje mediante una superficie de contacto extensa.
- En líneas de red que superen los 300 mm entre el filtro antiparasitario y el regulador del accionamiento:
 - Apantallar la línea de red.
 - Coloque la pantalla de la línea de red directamente en el regulador del accionamiento o en la unidad de retorno y en el filtro antiparasitario y conéctela mediante una superficie extensa a la placa de montaje.
- · Apantallado de las líneas de control:
 - Conecte las pantallas a las conexiones de apantallado siguiendo el camino más corto.

17.4.5 Puesta a tierra

- Conecte a tierra todos los componentes metálicos conductores (sistema de recuperación de la energía de red, regulador del accionamiento, filtro antiparasitario) mediante las líneas correspondientes desde un punto central de puesta a tierra (carril de puesta a tierra).
- Respete las secciones mínimas de cable especificadas en las normas de seguridad:
 - Para CEM no es decisiva la sección del cable sino la superficie de la línea y del contacto.

1

Instalación (MDR60A1320-503-00)

Instalación en un sistema de accionamiento típico CE

17.4.6 Notas adicionales

Los sistemas de recuperación de la energía de red son equipos eléctricos para su uso en instalaciones y sistemas de producción industriales. Conforme a la directiva CEM 2004/108/CE no es necesario marcar estos aparatos con un distintivo ya que según la directiva CEM y del EMVG son componentes para procesamiento posterior por parte de competentes fabricantes de máquinas e instalaciones y no pueden ser puestos en funcionamiento por separado. La prueba de la consecución de los objetivos indicados por la directiva CEM debe ofrecerla el instalador u operador de una máquina o instalación.

Según la directiva de Compatibilidad Electromagnética 2004/108/CE, con la utilización de los filtros de supresión de ruidos aceptados por SEW-EURODRIVE así como con el cumplimiento de las indicaciones para la instalación conforme a CEM quedan asimismo cumplimentadas las correspondientes condiciones para el marcado CE de la máquina o instalación completa en la que haya sido incluido.

El sistema de recuperación de la energía de red MOVIDRIVE[®] MDR60A1320-503-00 ha sido concebido para su aplicación en entornos de clase de valor límite A en combinación con los filtros de supresión de ruidos correspondientes.

Definición según la norma genérica:

- EN 61000-6-4 en el área de la emisión de interferencias
- EN 61000-6-2 en el área de inmunidad a interferencias

18 Puesta en marcha (MDR60A1320-503-00)

iMPORTANTE!

- Antes de la primera conexión, compruebe que el cableado está completo, que la polarización es correcta, que no existen cortocircuitos ni fallos a tierra.
- En caso de error en la conexión no siempre se produce un fallo en el regulador del accionamiento.

18.1 Primera conexión

1. Ajuste la posición correcta en el conmutador de selección de tensión, de lo contrario destruirá el sistema de recuperación de la energía de red.

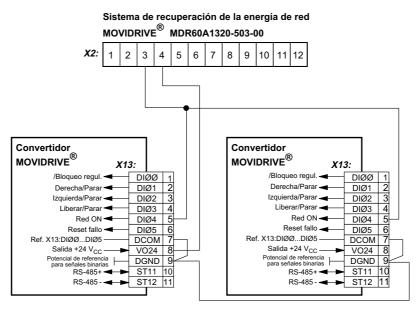
Posición del conmutador de selección de tensión	Valor de la tensión de la red conectada
400 V	380 V _{CA} - 415 V _{CA}
460 V	440 V _{CA} - 480 V _{CA}
500 V	500 V _{CA}

El conmutador de selección de tensión está ajustado de fábrica a 500 V_{CA} . Para reajustarlo, proceda de la siguiente manera:

- Desconecte la tensión de la unidad.
- Retire la placa frontal extrayendo los 8 tornillos de sujeción de la placa frontal.
- Reajuste el conmutador de selección de tensión y atornille de nuevo la placa frontal.

Si tiene que ajustar el jumper en la placa de circuitos control, realice los pasos en el mismo orden.

- 2. Activar la red. El aparato está listo para el funcionamiento tras aprox. 1 s.
- 3. Compruebe la disposición de funcionamiento del sistema de recuperación de la energía de red:
 - En caso que únicamente esté iluminado el LED verde del sistema de recuperación de la energía de red, la unidad está preparada para el funcionamiento.
 - Si además del LED verde se iluminan otros LEDs, significa que existe un fallo. Elimine el fallo antes de continuar con la puesta en funcionamiento. Consulte el capítulo "Funcionamiento y servicio" (→ pág. 197).
- 4. Controle la disposición de funcionamiento del regulador del accionamiento conforme a las instrucciones de funcionamiento correspondientes.


Puesta en marcha (MDR60A1320-503-00)

Mensaje de disponibilidad para el funcionamiento

18.2 Mensaje de disponibilidad para el funcionamiento

La siguiente figura muestra cómo es posible conectar el mensaje de disposición para el funcionamiento (preparado) del sistema de recuperación de la energía de red con la entrada digital "red on" del convertidor.

1877280523

19 Configuración (MDR60A1320-503-00)

La codificación de los puentes (jumpers J3, J5, J6, J7, J8 en la tarjeta de control permite diferentes posibilidades de control y diferentes funciones internas en caso de mensajes de fallos concretos).

A continuación se explican los diferentes términos que pueden observarse en cada una de las posibilidades de codificación.

19.1 Indicaciones importantes para la configuración

19.1.1 Inicio automático

"Inicio automático" significa que el aparato se pone automáticamente en funcionamiento aprox. 1 s después de activar la tensión de alimentación. La función "Inicio automático" se codifica mediante el jumper J1 situado en la tarjeta de control y no debe modificarse.

19.1.2 Desconexión - conexión

"Desconexión" significa que la activación del semiconductor de potencia y la recuperación de energía serán interrumpidas y por tanto no será posible el funcionamiento del freno del regulador del accionamiento.

"Conexión" significa la activación del control del semiconductor de potencia.

19.1.3 Proceso de archivo

El aparato cuenta con una memoria de errores en la que se pueden introducir ciertos errores. Los mensajes de error guardados deben ser confirmados mediante un reset o interrumpiendo la tensión de alimentación de la conexión a red del elemento de control. El "Proceso de archivo" lleva siempre consigo una "Desconexión" y a la apertura del relé de mensaje de fallo de alimentación.

19.1.4 Confirmación

Tras eliminar un error es necesario realizar una confirmación de la memoria de errores posterior al proceso de archivo pulsando el botón de confirmación ACTIVADO o desconectando las 3 fases de la alimentación de red.

iMPORTANTE!

 ¡No se permite la confirmación cuando existe una tensión del circuito intermedio demasiado alta, esto es, durante el funcionamiento del freno ya que puede provocar la destrucción de la unidad!

Configuración (MDR60A1320-503-00)

Indicaciones importantes para la configuración

19.1.5 Fallo de fase

La monitorización del fallo de fase vigila la alimentación de red en las 3 fases. En caso de fallo en una fase, el aparato continúa en funcionamiento en lo que respecta a la alimentación interna (p. ej. la memoria de errores).

Existen diferentes posibilidades de reacción del aparato ante un fallo de fase. Una de las posibilidades es el "funcionamiento con dos fases", la otra posibilidad es que el aparato interrumpa su funcionamiento y que muestre el fallo a través del relé de mensaje de fallo de alimentación.

La vigilancia del fallo de fase se codifica en la tarjeta de control mediante los jumpers J3, J5, J6 y J7 (\rightarrow siguiente tabla).

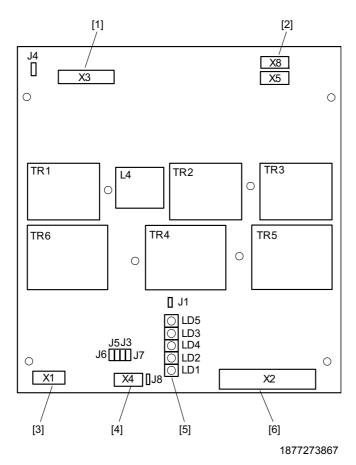
Jumper				Vigilancia dal falla da faca	
J3	J5	J6	J7	Vigilancia del fallo de fase	
1	0	0	1	Sensible, memoria de errores "ACTIVADA"	
1	1	1	1	No sensible, memoria de errores "ACTIVADA"	
0	Х	Х	1	Desactivada, memoria de fallos "ACTIVADA"	
0	Х	Х	0	Desactivada, memoria de fallos "OFF"	

1 = jumper cerrado

0 = jumper abierto

X = jumper de cualquier modo

iMPORTANTE!


• ¡Sólo es posible retirar o conectar el jumper J3 con la alimentación desconectada!

Memoria de errores "ACTIVADA" significa que la presentación del error "fallo de fase" se mantiene activa en el LED en tanto que no sea confirmada.

Memoria de errores "DESACTIVADA" significa que el error "fallo de fase" se muestra en el LED durante el tiempo en que exista.

19.1.6 Plano de conexiones y componentes de la tarjeta de control

- [1] X3: Conexión con la placa de circuitos de excitación
- [2] X5, X8
- [3] X1: Sincronización de la red
- [4] X4: Conexión con la placa electrónica del display
- [5] LEDs (indicación del estado funcionam)
- [6] X2: Regleta de bornas de control

14

Configuración (MDR60A1320-503-00)

Indicaciones importantes para la configuración

19.1.7 Vigilancia de sobretensiones

La vigilancia de sobretensiones para la tensión de red origina una desconexión del sistema de recuperación de la energía de red cuando detecta 1,15 veces la tensión nominal de la unidad.

Como mensaje de error se muestra el código de error $3 \rightarrow Cap$. "Funcionamiento y servicio"). Para discernir los mensajes de error "fallo de fase" y "sobretensión" existe la posibilidad de desactivar la vigilancia del fallo de fase desconectando el jumper 3 de la tarjeta de control. Si a continuación se produce una desconexión junto con la indicación a través de los LEDs rojo y verde (código de error 3, \rightarrow cap. "Funcionamiento y servicio") la causante de la desconexión habrá sido una sobretensión. La vigilancia de sobretensiones se codifica en la tarjeta de control mediante los jumpers J3, J5, J6, J7 y J8 (\rightarrow siguiente tabla).

	Jumper					Indicación LED		
J3	J5	J6	J7	J8	Funcio- namien- to	Fallo de fase	Fallo de alimenta- ción	Evaluación mediante sobretensión
1	Х	X	1	1	Verde	Rojo	Amarillo	Sobretensión / fallo de fase, salto de conmutación
1	Χ	Χ	0	1	Verde	-	Amarillo	Sobretensión
0	Х	X	1	1	Verde	Rojo	Amarillo	Sobretensión / fallo de fase, salto de conmutación
0	Х	Χ	0	1	Verde	-	Amarillo	Sobretensión
0	Х	Χ	0	1	Verde	Rojo	Amarillo	Fallo persistente de fase

^{1 =} jumper cerrado

19.1.8 Ajuste estándar

Los jumpers del MOVIDRIVE[®] MDR60A1320-503-00 están ajustados de forma estándar según la siguiente configuración:

Jumper						
J1	J3	J4	J5	J6	J7	J8
1 ¹⁾	0	01)	1	1	0	1

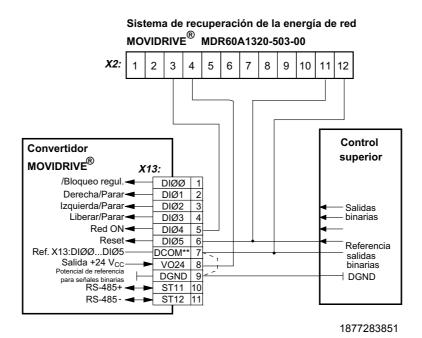
^{1) ¡}No se debe modificar el ajuste!

1 = jumper cerrado

0 = jumper abierto

^{0 =} jumper abierto

X = jumper de cualquier modo



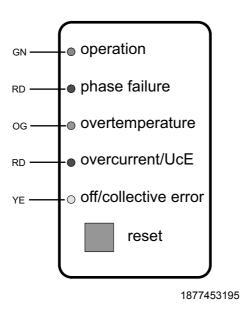
20 Funcionamiento y servicio (MDR60A1320-503-00)

20.1 Reset

20.1.1 Sistema de recuperación de la energía de red

En el sistema de recuperación de energía de red MOVIDRIVE $^{\textcircled{\$}}$ MDR60A1320-503-00 se produce un reset automático tras cada desactivación. Puede generar un reset de forma manual mediante el pulsador de reset en la placa frontal (\rightarrow Cap. "Indicaciones de funcionamiento") del MDR60A1320-503-00.

^{**} Si se conectan las entradas binarias con la alimentación de tensión de 24 V_{CC} X13:8 "VO24", conecte en el convertidor MOVIDRIVE[®] un puente entre X13:7 y X13:9.


Funcionamiento y servicio (MDR60A1320-503-00)

Indicaciones de funcionamiento

20.2 Indicaciones de funcionamiento

Los 5 LED situados en la tapa del sistema de recuperación de energía de red indican el estado de funcionamiento en cada caso. En relación con este punto, consulte el capítulo "Mensajes LED" (→ pág. 199). Para mejorar el control en el caso de trabajos de servicio se presentan los mismos LEDs en la tarjeta de control interna. A diferencia de la tapa, en ésta se muestra un LED naranja separado cuya función es la del LED de dos colores (verde/naranja) situado en la tapa.

Si durante un proceso de frenado se produce un mensaje de fallo y la desconexión del sistema de recuperación de la energía de red, sólo podrá llevarse a cabo la confirmación en el sistema de recuperación de la energía de red una vez que el proceso de frenado haya finalizado y que la tensión de circuito intermedio haya descendido hasta el valor normal.

A fin de eliminar posibles problemas se recomienda bloquear la habilitación del pulso del regulador del accionamiento mediante el relé de mensaje de fallo de alimentación.

20.2.1 Desconexión U_{CE}

El sistema de recuperación de la energía de red se desconecta a través del dispositivo de protección U_{CE} cuando se supera la corriente máxima especificada para cada aparato. Según el principio de este dispositivo de protección, es necesaria una sobrecarga del IGBT muy por encima de sus especificaciones durante menos de un milisegundo. En casos aislados esto no supone un problema para el aparato. Si la desconexión de corriente sucede a menudo o regularmente, esto puede acelerar el envejecimiento del semiconductor de potencia y por último a un fallo prematuro de los componentes.

Numerosas desconexiones U_{CF} debidas a sobrecorrientes pueden producirse por:

- Sobrecarga
- · Subtensión en la red
- Regulador defectuoso u oscilante, p. ej. en el regulador del accionamiento
- · Una magnitud oscilante del regulador
- · Dimensionado incorrecto de la instalación

Funcionamiento y servicio (MDR60A1320-503-00) Indicaciones de funcionamiento

20.2.2 Mensajes LED

	Displays LED				Significado		
Código de fallo	Funcio- namien- to (verde)	Fallo de fase (rojo)	Sobre corri- ente / UCE (rojo)	Tempe- ratura excesiva (naranja)	Fallo de alimen- tación (amarillo)	Durante la primera puesta en funcionamiento	Durante el funcionamiento
1	X	-		-	-	Aparato listo para el funcionamiento (tras aprox. 1 s)	Aparato en funcionamiento
2	X	-	-	-	-	Aparato listo para el funcionamiento, energ → Comprobar los fusibles	ıía .
3	X	-	-	X	X	-	Temperatura excesiva en el disipador. → No es posible confirmar el mensaje de error en tanto que la temperatura sea aún demasiado alta.
4	Х	-	-	-	Х	-	Como el código de fallo 3 → Temperatura del disipador ha disminuido de nuevo y es posible confirmar.
5	Х	-	-	-	Х	El aparato ha sido desconectado (DESACTIVADO externo). → Habilitación necesaria	
6	X	-	-	-	X	Activación de la vigilancia de sobretensiones. Cuando la tensión de red ha disminuido al valor nominal → habilitación necesaria	
7	Х	Х	-	-	Х	Campo de giro incorrecto o falta una fase	Fallo de fase detectado → Confirmación necesaria
8	X	-	Х	-	Х	-	Sobrecorriente (en la parte de CA) detectada. → Confirmación necesaria
9	X	Х	X	-	X	Código de fallo 7 y 8	Sobrecorriente detectada a la vez que el fallo de fase debido a un salto de conmutación.
10	Х	Х	Х	Х	Х	Aparecen varios fallos a la vez.	
11	-	-	-	-	-	Aparato fuera de servicio, por lo menos 2 fases sin tensión.	
13	Х	Х	-	-	-	-	Detectado salto de conmutación masivo, sin desconexión ya que jumpers 3 y 7 abiertos. → Continuación del funcionamiento posible, se recomienda mejorar la red.

Funcionamiento y servicio (MDR60A1320-503-00)

Mantenimiento

20.3 Mantenimiento

El sistema de recuperación de corriente de red MOVIDRIVE[®] MDR60A1320-503-00 no necesita mantenimiento en caso de ajustarse a las condiciones de uso indicadas. Consulte el capítulo "Datos técnicos" (\rightarrow pág. 177).

20.3.1 Comprobar los orificios para el aire de refrigeración

Los orificios pueden obturarse si hay impurezas en el aire. Compruebe por lo tanto los sistemas de recuperación de energía de red regularmente, en intervalos de aprox. 4 semanas dependiendo del grado de impurezas en el aire. Aspire los orificios obturados mediante un aspirador.

iIMPORTANTE!

No utilice objetos cortantes o punzantes como p. ej. cuchillos o atornilladores para limpiar las aberturas de refrigeración.

A
Adaptador de circuito intermedio 2Q DLZ12B43
Adaptador de circuito intermedio 4Q DLZ14B44, 136
Adaptador del circuito intermedio 2Q DLZ12B135
Ajuste de fábrica54
Aprobación C-Tick
Aprobación UL12
Asignación de bornas53
Asistencia técnica150
Auto-Reset56
Ayuda online150
В
Bloqueo de parámetros54
c
Canal de aire134
Canal de aire DLK31B41
Clase de valor límite C285
Clase de valor límite C385
Comunicación serie55
Comunicación serie SBus 157
Conexión de circuito intermedio76
Con módulo de freno10
Con sistema de recuperación de energía de red8
Sin sistema de recuperación de energía de red7
Conexión de circuito intermedio DLZ11B42, 138
Conexión de circuito intermedio DLZ31B45, 140
Conexión en paralelo
Resistencias de frenado79
Configuración54
Configuración del MDR60A1320193
Consigna PO 1 / 2 / 350
Consignas50
Consignas / Rampas50
Contactor de red74
Contactor de red y fusibles de red, notas74
Corr. activa48
Corr. salida48
Corriente nominal de salida49
CH Chanas de señalización MDR61R1600/2500 124
TENSOS NA CANSIL/SCION IVILIRIA IR IBUILI/ MULLE 1771

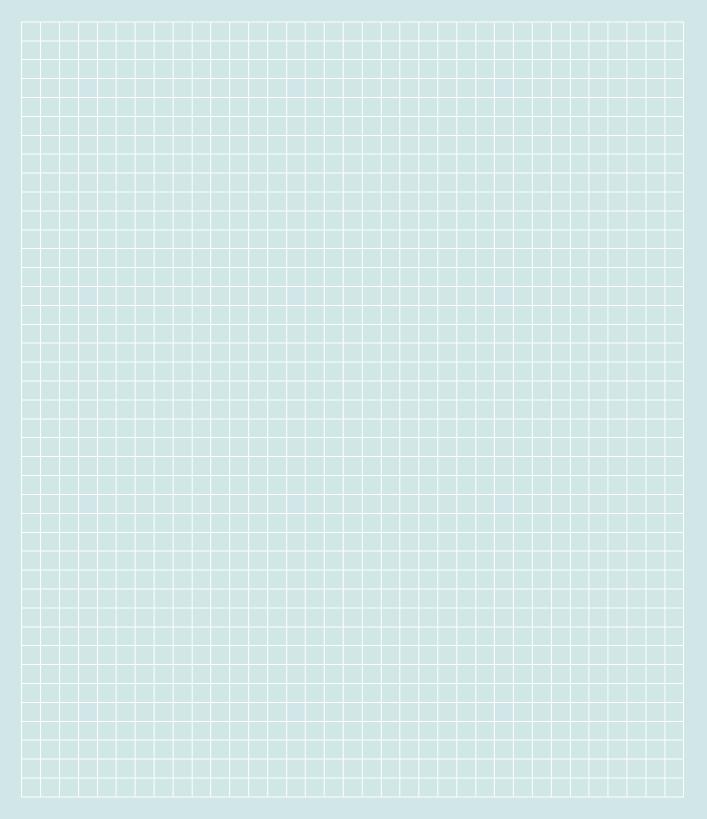
D	
Datos técnicos	
MOVIDRIVE® MDR60A0150	
MOVIDRIVE® MDR60A0370	
MOVIDRIVE® MDR60A0750	18
MOVIDRIVE® MDR60A1320	
MOVIDRIVE® MDR61B1600	
MOVIDRIVE® MDR61B2500	20
MOVIDRIVE® MDR62B1600	
MOVIDRIVE® MDX62B2000	
MOVIDRIVE® MDX62B2500	21
Resistencia de frenado BWT / BWP	80
Sistema de recuperación de la energía de red MDR60A	13
Sistema de recuperación de la energía de red MDR61B	14
Datos técnicos del MDR60A1320	
Datos de medición	
Datos técnicos generales	
Filtro antiparasitario	
Fusibles y secciones de cable	
Intensidad de corriente admisible	
DBG60B	
Funciones de las teclas	157
Pantallas iniciales	
Derechos de autor	90
Derechos de reclamación en caso	
de defectos	90
Descripción de consigna PO1	56
Descripción de consigna PO2	56
Descripción de consigna PO3	56
Descripción de los datos del proceso	56
Descripción de parámetros	
P2xx Parámetros del regulador	51
P4xx Señales de referencia	53
P6xx Asignación de bornas	53
P8xx Funciones de la unidad	54
Vista general en forma de tabla	46
Descripción del sistema	6
Descripción del valor de consigna PO1 / PO2 / PO3	56
Descripción del valor real PI1	57
Descripción del valor real PI2	
Descripción del valor real PI3	
Designación de modelo	
Diagnóstico de bus	

Dimensiones	Conexión de d
Filtro de red NF600-50336	MDR6
Filtros de red NF009-503 – NF300-50335	Conexión de d
Inductancia ND020 / ND030 / ND045 /	sin ML
<i>ND085.</i> 29	tipo A
Inductancia ND150 / ND200 / ND30029	Conexión de d
MOVIDRIVE® MDR60A015022	sin ML
MOVIDRIVE® MDR60A037023	tipo B
MOVIDRIVE® MDR60A075024	Establecer comuni
MOVIDRIVE® MDR60A132025	Estado de fallo
MOVIDRIVE [®] MDR61B160026	Estado del conver
MOVIDRIVE® MDR61B250026	Estado funcionam
MOVIDRIVE® MDX62B160027	Estructura
MOVIDRIVE® MDX62B200027	MDR60A0150
MOVIDRIVE® MDX62B250027	MDR60A0370
Reactancia de circuito intermedio ZD01031	MDR60A0750
Reactancias de circuito intermedio ZD010/	MDR60A1320
ZD140 / ZD33032	MDR61B1600
Dirección grupo RS-48555	MDX62B tama
Dirección RS-485	MDX62B tama
	MDX62B tama
Dirección SBus 1	MDX62B tama
Display de 7 segmentos161	alimer
DLA31B	Estructura de la ur
DLB11B	MDR60A0150
DLB31B38, 130	MDR60A0370
DLK31B41, 134	MDR60A0750
DLS31B39, 132	MDR60A1320
DLZ11B42, 138	MDR60A1600
DLZ12B43, 135	MDX62B tama
DLZ14B44, 136	MDX62B tame
DLZ31B45, 140	MDX62B tame
E	MDX62B tame
Emisión de interferencias85	alimer
Energía realimentada	Etapa de potencia
Entrada binaria DI0153	Exclusión de respo
	Excludion do roops
Entrada binaria DI02	F
Entradas binarias de la unidad básica49, 53	Filtro de red NF
Entradas binarias DI00 DI0749	Firmware unidad b
Equipo de control tamaño 7104	Frecuencia
Error t-0 t-450	Fuente de aliment
Espacio libre mínimo107	Transformació
Esquema de conexiones	Transformació
Chapas de señalización124	MDX6
Conexión de circuito intermedio con	Transformació
MDR60A0150 como módulo	Fuente de aliment
de frenado121	Fuente de control
Conexión de circuito intermedio con MDR60A0150/0370/0750120	

Conexión de circuito intermedio con	400
MDR61B1600/2500	122
Conexión de circuito intermedio	
sin MDR60A/61B en conexión tipo A	110
Conexión de circuito intermedio	110
sin MDR60A/61B en conexión	
tipo B	119
Establecer comunicación con las unidades	
Estado de fallo	
Estado del convertidor	
Estado funcionam	
Estructura	40
MDR60A0150 tamaño 2	08
MDR60A0370 tamaño 3	
MDR60A0370 tamaño 4	
MDR60A0730 tamaño 4 MDR60A1320 tamaño 6	
MDR61B1600/2500 tamaño 7	
MDX62B tamaño 7	
MDX62B tamaño 7 equipo de control	
MDX62B tamaño 7 etapa de potencia	105
MDX62B tamaño 7 fuente de	405
alimentación	105
Estructura de la unidad	
MDR60A0150 tamaño 2	
MDR60A0370 tamaño 3	
MDR60A0750 tamaño 4	
MDR60A1320 tamaño 6	
MDR60A1600/2500 tamaño 7	
MDX62B tamaño 7	
MDX62B tamaño 7 equipo de control	
MDX62B tamaño 7 etapa de potencia	105
MDX62B tamaño 7 fuente de	
alimentación	
Etapa de potencia tamaño 7	
Exclusión de responsabilidad	90
F	
Filtro de red NF	33
Firmware unidad básica	
Frecuencia	
Fuente de alimentación IT	40
Transformación de MDR61B1600/2500	126
Transformación de MDN01B1000/2300	120
MDX62B1500/200/2500	127
Transformación MDR60A0150	
Fuente de alimentación tamaño 7	
Fuente de control	
. nelic ne colitioi	ປ ເ

Funcionamiento	<i>DLB31B</i> 130
MDR60A0150/0370/0750154	DLK31B134
MDR61B1600/2500154	DLS31B132
Funcionamiento y servicio del MDR60A1320197	<i>DLZ12B</i> 135
Indicaciones de funcionamiento198	<i>DLZ14B</i> 136
Mantenimiento200	<i>DLZ31B</i> 140
Mensajes LED199	MDR60A0150/0370/0750106
Reset197	MDR61B1600/2500106
Funciones de la unidad54	MDX62B1600/2000/2500106
Fusibles de red74	Protección contra contacto accidental
	<i>DLB11B</i> 129
G	Protección contra contacto accidental
Ganancia propor. del regulador de corriente51	<i>DLB31B</i> 130
Ganancia propor. del regulador de tensión51	Protección contra contacto accidental
Generadores de rampa50	para MDR60A0750128
н	Resistencia de frenado BW109
Habilitar datos PO57	Zócalo de montaje132
Histéresis53	Instalación conforme a las medidas de
Horas de funcionamiento49	compatibilidad electromagnética (CEM)
Horas de habilitado49	según EN 61800-385
Tiords de Habilitado	Instalación del MDR60A1320180
I	Asignación de bornas en la regleta
Indicaciones	de bornas de control X2 186
Identificación en la documentación89	Conexión eléctrica183
Indicaciones de estado48	Esquema de conexiones184
Indicaciones de funcionamiento156	Formas de red y condiciones para
Display de 7 segmentos156	la red71, 181
MDR60A0150/0370/0750155	Indicaciones para la instalación eléctrica 181
MDR61B1600/2500156	Líneas de control186
Indicaciones de instalación	K
MDR60A0150/0370/0750106	Kit de conexión DLA31B40
MDR61B1600/2500106	
Indicaciones generales89	L
Indicador de la potencia activa52	Lista de fallos 162
Inductancias ND28	M
Información de fallos	Marcas90
MDR60A0150/0370/0750159	Memoria de fallos50
MDR60A1600/2500160	Mensaje de corriente53
Instalación	Mensaje de disponibilidad para el servicio 144
Adaptador de circuito intermedio	Mensaje de fallo en el display de
4Q DLZ14B136	7 segmentos 161
Adaptador del circuito intermedio	Mensajes LED
. 2Q DLZ12B135	Montaje
Anillo de ferrita HD112	Tamaño 7 113
Cable y fusibles107	MOVITOOLS® MotionStudio148
Cables de control apantallados110	
Canal de aire134	N
Conexión de circuito intermedio DLZ11B138	Nombre de productos90
Conexión de circuito intermedio DLZ31B140	Norma CE 12
DLB11B129	

Notas de seguridad	PU8x Memor. fallo	50
Estructura de las integradas89	P09x Diagnóstico de bus	50
Estructura de las referidas a capítulos89	P101 Fuente de control	51
Identificación en la documentación89	P10x Preselección de consigna	50
Notas de seguridad (MDR60A1320-503-00)171	P1xx Consignas / Integradores	50
Notas de seguridad integradas89	P290 Tensión mínima	51
Notas de seguridad referidas a capítulos89	P291 Ganancia propor. del regulador	
0	de tensión	51
	P292 Tiempo de reajuste del regulador	
Opción	de tensión	51
Adaptador de circuito intermedio 2Q DLZ12B43	P293 Ganancia propor. del regulador	
Adaptador de circuito intermedio	de corriente	51
4Q DLZ14B44	P294 Tiempo de reajuste del regulador	ΕO
Canal de aire DLK31B41	de corriente	
Conexión de circuito intermedio DLZ11B42	P295 Tiempo de tolerancia de Red OFF	
Conexión de circuito intermedio DLZ31B45	P296 Uz reducido	
Filtro de red NF33	P297 Energía realimentada	
Inductancias ND28	P298 Indicación de la potencia activa	
Kit de conexión DLA31B40	P299 Tensión de red	
Protección contra contacto accidental	P29x Recuperación de energía	
DLB11B37	P2xx Parámetros del regulador	
Protección contra contacto accidental	P430 Valor de referencia de corriente	
DLB31B38	P431 Histéresis	
Reactancia de circuito intermedio ZD30	P432 Tiempo de retardo	
Zócalo de montaje DLS31B39	P433 Señal = "1" si	
Opción zócalo del encoder49	P43x Señal de referencia de corriente	
	P4xx Señales de referencia	
P	P600 Entrada binaria DI01	
P002 Frecuencia	P601 Entrada binaria DI02	
P004 Corr. salida	P60x Entradas binarias de la unidad básica	
P005 Corr. activa	P620 Salida binaria DO01	_
P008 Tensión de circuito intermedio48	P621 Salida binaria DO02	
P009 Corr. salida	P622 Salida binaria DO03	
P010 Estado del convertidor48	P623 Salida binaria DO04	
P011 Estado funcionam48	P62x_Salidas binarias de la unidad básica	
P012 Estado de fallo	P6xx Asignación de bornas	
P014 Temperatura del radiador49	P802 Ajustes de fábrica	54
P015 Horas de funcionamiento49	P803 Bloqueo de parámetros	
P016 Horas de habilitado49	P804 Reset datos estadísticos	54
P017 Trabajo49	P80x Configuración	54
P039 Entradas binarias DI00 DI0749	P810 Dirección RS-485	55
P03x Entradas binarias unidad básica49	P811 Dirección grupo RS-485	55
P059 Salidas binarias DB00, DO01 DO0549	P812 Tiempo de desbordamiento RS485	55
P05x Salidas binarias unidad básica49	P81x Comunicación serie	55
P070 Tipo de unidad49	P833 Respuesta TIEMPO DE	
P071 Corriente nominal de salida49	DESBORDAMIENTO RS485	55
P072 Opción zócalo del encoder49	P836 Respuesta DESBORDAMIENTO SBus 1	. 56
P076 Firmware unidad básica50	P83x Reacciones en caso de fallo	55
P07x Datos de unidad49	P840 Reset manual	56



P841 Auto-Reset56	Puesta en marcha	
P842 Tpo. reset autom56	con consola de programación DBG60B	. 148
P84x Respuesta de reseteo56	MDR60A0150/0370/0750	. 144
P870 Descripción de consigna PO156	MDR61B1600/2500	. 144
P871 Descripción de consigna PO256	Puesta en marcha del MDR60A1320	. 191
P872 Descripción de consigna PO356	Mensaje de disponibilidad para	
P873 Descripción del valor real PI157	el servicio	. 192
P874 Descripción del valor real PI257	Puesta en marcha MDR60A0150/0370/0750	
P875 Descripción del valor real PI357	Ajuste del parámetro P52	. 147
P876 Habilitar datos PO57	Puesta en marcha MDR61B1600/2500	
P87x Descripción de los datos del proceso56	Ajuste del parámetro P52	. 147
P881 Dirección SBus 157	R	
P883 Tiempo de desbordamiento Sbus 157	Reactancia de circuito intermedio ZD	30
P884 Veloc. transm. en baudios del SBus 157	Reparación	
P88x Comunicación serie SBus 1 / 257	Reset	
P8xx Funciones de la unidad54	Reset datos estadísticos	
Palabras de indicación en notas de seguridad89	Reset manual	
Parámetros del regulador51	Resistencia a interferencias	
Pares de apriete de las bornas de potencia106		00
Placa de características	Resistencia de frenado, selección	90
MDR60A tamaño 696	Potencia máxima de frenado Resistencias de frenado	80
MDR60A tamaños 2 – 495		
MDR61B tamaño 796	Asignación a los aparatos de 400/500 V (5_3)	Ω1
Planificación58	Conexión en paralelo	
Planificación con MDR60A/61B62	Respuesta a fallo	
Conexión de circuito intermedio	Respuesta de reseteo	
y fusibles de circuito intermedio75	Respuesta DESBORDAMIENTO SBus 1	
Indicaciones de planificación62	Respuesta TIEMPO DE DESBORDAMIENTO	50
Requisitos de la red72	RS485	55
Sistema de puntos64		00
Planificación sin MDR60A/61B58	S	
Combinaciones de aparatos admisibles	Salida binaria DO01	54
en el tipo de conexión A58	Salida binaria DO02	54
Combinaciones de aparatos admisibles	Salida binaria DO03	54
en el tipo de conexión B60	Salida binaria DO04	
Indicaciones de planificación59	Salidas binarias DB00, DO01 DO05	49
Sección de la línea de conexión	Salidas binarias de la unidad básica	54
de circuito intermedio78	Salidas binarias del equipo básico	49
Posición de montaje107	Selección de la resistencia de frenado	
Preselección de consigna50	Ejemplo de cálculo	84
Protección contra contacto accidental	Selección de la resistencia de frenado	
de las bornas de potencia128	BW/BWT	
Protección contra contacto accidental	Indicaciones generales	
DLB11B	Señal = "1" si	
Protección contra contacto accidental	Señal de referencia de corriente	
DLB31B	Señales de referencia	53
Protección contra contacto accidental para MDR60A0750128	Servicio	
Para MD100/10700120	MDR60A0150/0370/0750	
	MDR6041600/2500	150

Servicio tecnico electronico	.167
Sistema de puntos63	3, 64
Sistema de recuperación de la energía de red MDR60A	
Datos técnicos generales	13
Sistema de recuperación de la energía de red MDR61B	
Datos técnicos generales	14
т	
Tarjeta de memoria	.158
Temperatura del radiador	49
Tensión de circuito intermedio	48
Tensión de red	52
Tensión mínima	51
Tiempo de desbordamiento SBus 1	57
Tiempo de reajuste del regulador de corriente	52
Tiempo de reajuste del regulador de tensión	51
Tiempo de retardo	53
Tiempo de tolerancia de Red OFF	52
Tiempo reset automático	56
Timeout RS-485	55
Tipo de unidad	49
Trabajo	49
Transformación del convertidor de corriente	
a motor	.143
Transformación en un convertidor de	
corriente a motor	.143

U	
Uso	
de la documentación	89
Uz reducido	52
V	
Valor real PI 1 / 2 / 3	
Valores de indicación	48
Valores de proceso	48
Veloc. trans. en baudios del SBus 1	57
z	
Zócalo de montaje	132
Zócalo de montaie DLS31B	

SEW

SEW-EURODRIVE GmbH & Co KG P.O. Box 3023 D-76642 Bruchsal/Germany Phone +49 7251 75-0 Fax +49 7251 75-1970 sew@sew-eurodrive.com

→ www.sew-eurodrive.com