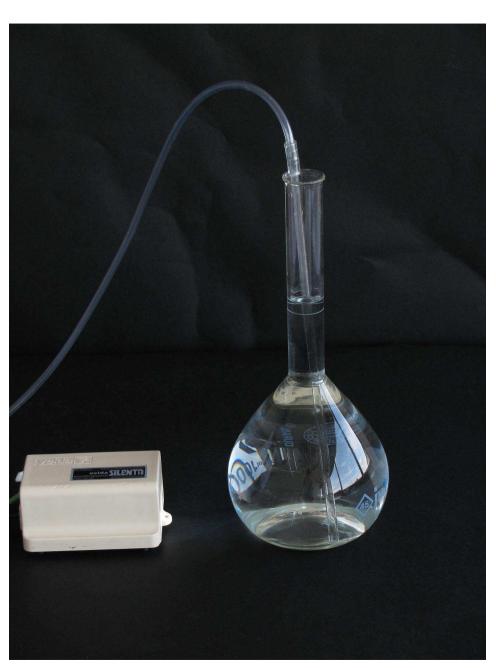
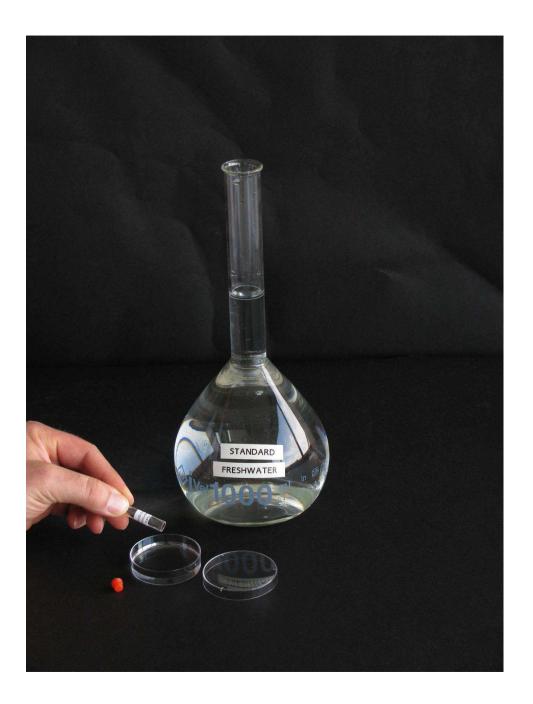


TEST PROCEDURE

PREPARATION OF STANDARD FRESHWATER

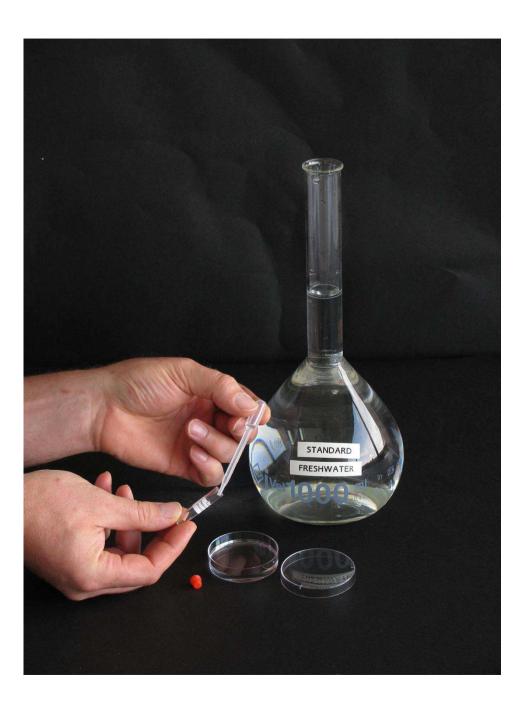

- VOLUMETRIC FLASK (1 LITER)
- VIALS WITH SOLUTIONS OF CONCENTRATED SALTS
- DISTILLED (or deionized) WATER

POUR THE 5 VIALS WITH CONCENTRATED SALT SOLUTIONS IN \pm 800 ML DISTILLED WATER, IN THE 1 LITER VOLUMETRIC FLASK


- FILL THE FLASK TO THE 1 LITER MARK
- AERATE FOR AT LEAST 15 MINUTES

HATCHING OF OSTRACOD CYSTS

OPEN A TUBE WITH CYSTS AND FILL IT WITH 1 ML STANSTARD FRESHWATER


STOPPER THE TUBE AND SHAKE IT

HATCHING OF OSTRACOD CYSTS

PUT 8 ML STANDARD FRESHWATER INTO THE PETRI DISH

EMPTY THE CONTENTS OF THE VIAL WITH CYSTS INTO THE PETRI DISH

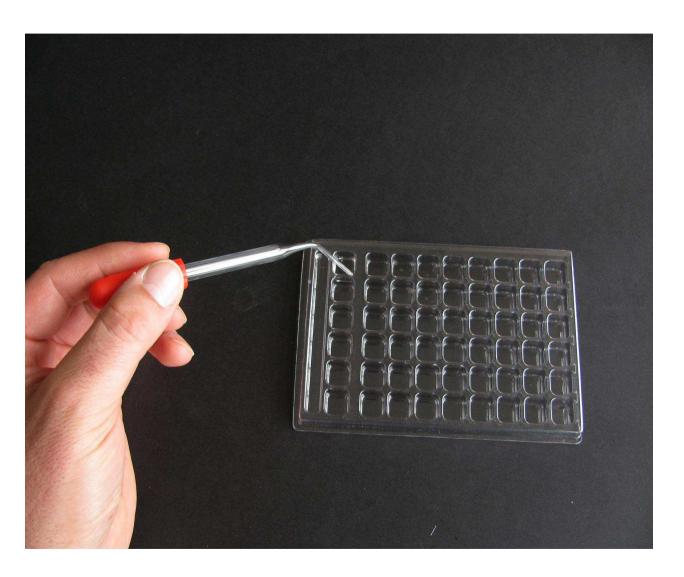
TO SECURE THE COMPLETE
TRANSFER OF THE CYSTS,
THE VIAL SHOULD BE RINSED
TWICE WITH 1 ML STANDARD
FRESHWATER

INCUBATION OF THE CYSTS

INCUBATE THE PETRI DISH
FOR 52 HOURS AT 25 °C
UNDER CONTINOUS ILLUMINATION
OF MIN. 3 000 – 4 000 LUX

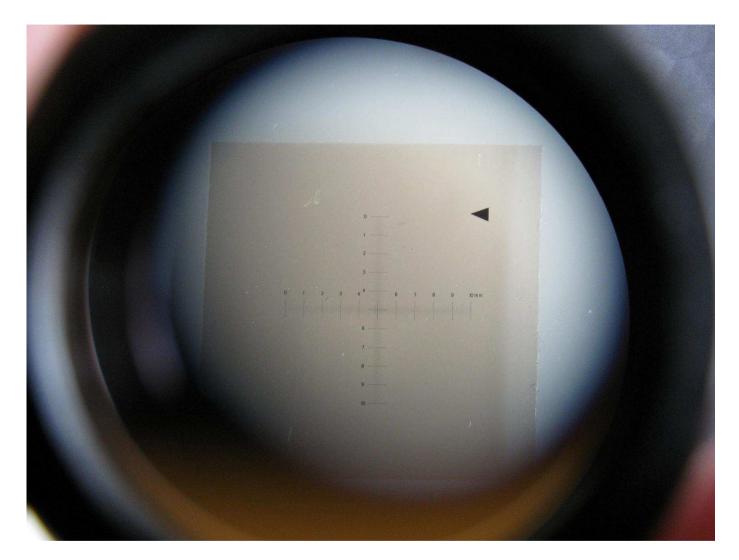
4h PRE-FEEDING
OF THE TEST ORGANISMS

TAKE ONE VIAL
WITH SPIRULINA POWDER AND
FILL IT WITH STANDARD
FRESHWATER

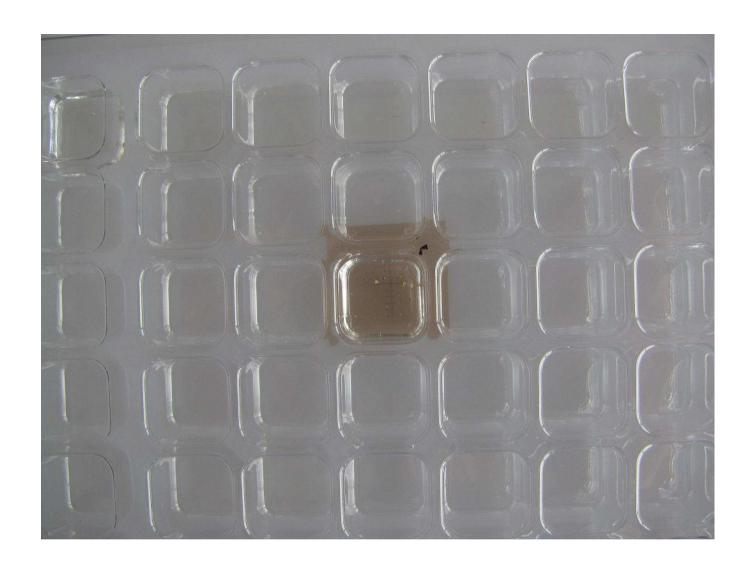


SHAKE THE VIAL WITH THE
SPIRULINA SUSPENSION,
POUR IT IN THE PETRI DISH
WITH THE OSTRACODS AND
SWIRL THE PETRI DISH GENTLY

LENGTH MEASUREMENT OF FRESHLY HATCHED OSTRACODS


PICK UP 10 OSTRACODS FROM THE HATCHING PETRI DISH WITH A GLASS MICROPIPETTE

TRANSFER THEM INTO
ONE CUP OF THE
MULTIWELL FOR "LENGTH
MEASUREMENT"



ADD ONE DROP OF LUGOL FIXATIVE
TO THE CUP WITH THE OSTRACODS
AND WAIT UNTIL THE ORGANISMS ARE
COMPLETELY IMMOBILE

13

POSITION THE MICROMETER SLIP IN THE CENTRE OF VISUAL FIELD OF THE DISSECTION MICROSCOPE

PUT THE MULTIWELL FOR LENGTH MEASUREMENT ON THE STAGE OF THE DISSECTION MICROSCOPE, AND MEASURE THE LENGTH OF THE ORGANISMS

SCORE THE LENGTH RESULTS ON THE "RESULTS SHEET" (IN COLUMN DAY 0)

N.B. THE SMALLEST DIVISIONS OF THE MICROMETER LINES ARE 50 μm FRESHLY HATCHED OSTRACODS HAVE A LENGTH OF ABOUT 200 μm

PREPARATION OF THE ALGAL FOOD SUSPENSION

TAKE ONE TUBE WITH ALGAL BEADS AND POUR OUT THE STORAGE MEDIUM

17

18

SHAKE THE TUBE ON A VORTEX UNTIL THE MATRIX SURROUNDING THE ALGAE HAS FULLY DISSOLVED AND THE MICROALGAE ARE TOTALLY SET FREE

CENTRIFUGE THE TUBE FOR 10 MINUTES AT 3000 RPM IN A CONVENTIONAL LAB CENTRIFUGE

21

- ADD 10 ML DISTILLED WATER TO THE TUBE
- CAP AND SHAKE THE TUBE TO RESUSPEND THE ALGAE

22

CENTRIFUGE THE TUBE AGAIN AT 3000 RPM FOR 10 MINUTES

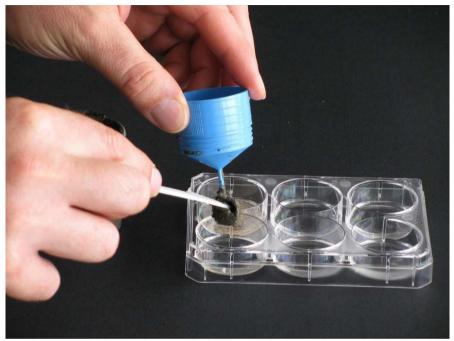
AND DECANT THE SUPERNATANT

23

- TRANSFER THE ALGAL PELLET TO A 25 ML VOLUMETRIC FLASK
- ADD STANDARD FRESHWATER TO THE 25 ML MARK
- SHAKE TO OBTAIN A HOMOGENOUS ALGAL SUSPENSION

ADDITION OF SEDIMENT, ALGAL FOOD AND OSTRACODS TO THE TEST PLATE

ADD 2 ML OF STANDARD FRESHWATER
INTO EACH WELL OF A MULTIWELL TEST
PLATE



REFERENCE SEDIMENT TEST PLATE

ADD 2 SPOONS OF 500 μI EACH OF SEDIMENT INTO EACH WELL

TEST SEDIMENT TEST PLATE

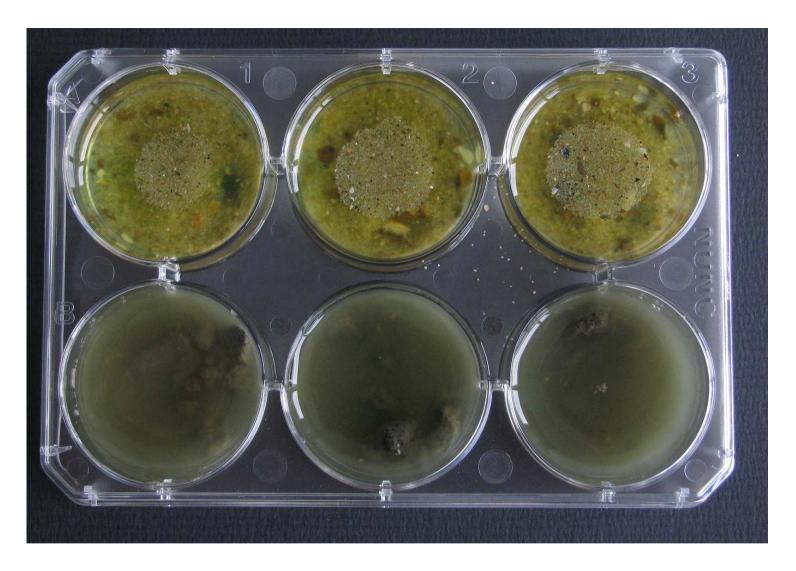
- ADD 2 SPOONS OF SEDIMENT INTO EACH WELL
- STRIKE OFF THE EXCESSIVE SEDIMENT FROM THE SPOON WITH THE PLASTIC SPATULA
- TRANSFER SEDIMENT INTO THE CUPS BY USING THE TIP OF THE SPATULA

27


- TRANSFER THE ALGAL FOOD SUSPENSION INTO A BEAKER
- VERY GENTLY ADD 2 ML SUSPENSION INTO EACH WELL

FILL THE LID OF THE HATCHING
PETRI DISH WITH 10 ML STANDARD
FRESHWATER

TRANSFER, WITH THE GLASS
MICROPIPETTE, A PART OF THE
OSTRACOD NEONATES FROM THE
HATCHING PETRI DISH INTO THE LID



- COVER THE MULTIWELL WITH A PIECE OF PARAFILM
- PUT THE LID ON TOP
- PUT THE MULTIWELL PLATE IN THE INCUBATOR AT 25 °C, IN DARKNESS, FOR 6 DAYS

32

SCORING OF THE TEST

TRANSFER OF THE OSTRACODS INTO A PETRI DISH

A. SCORING OF THE REFERENCE SEDIMENT

- SUCK UP THE SEDIMENT SUSPENSION WITH A "LARGE MOUTH" MICROPIPETTE
- TRANSFER IT INTO THE MICROSIEVE

34

- GENTLY RINSE THE CONTENTS OF THE MICROSIEVE UNTIL ALL THE FINE SEDIMENTS ARE WASHED OUT
- PROCEED FURTHER WITH THE STEPWISE TRANSFER OF THE SEDIMENT TO THE MICROSIEVE FOLLOWED BY RINSING,

 TILL MOST OF THE SEDIMENT HAS BEEN TRANSFERRED

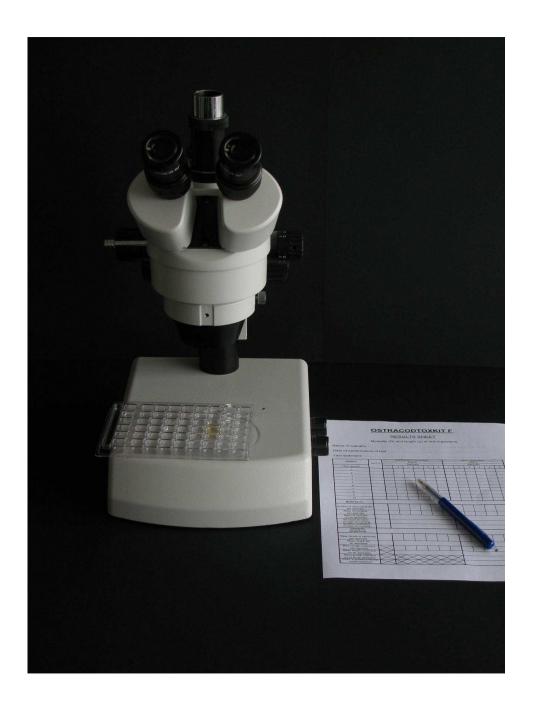
- ADD A FEW ML STANDARD FRESHWATER TO THE CUP
- MIX IT WITH THE REMAINING SEDIMENT
- TRANSFER IT TO THE MICROSIEVE FOR RINSING.
- REPEAT THIS OPERATION,
 TO MAKE SURE THAT ALL THE SEDIMENT
 AND OSTRACODS HAS BEEN TRANSFERRED

36

TURN THE MICROSIEVE UPSIDE DOWN AND RINSE THE CONTENTS INTO A
PETRI DISH WITH STANDARD FRESHWATER

B. SCORING OF THE TEST SEDIMENT

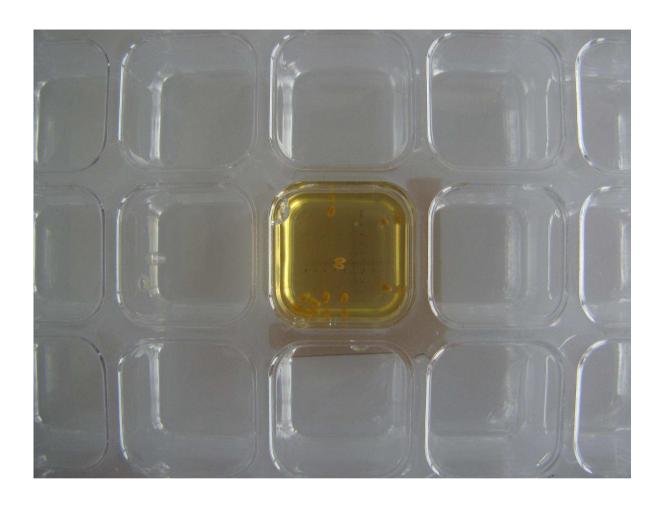
REPEAT THE PROCEDURE PRESCRIBED FROM N° 32 TO 35 FOR REMOVING THE OSTRACODS FROM THE SEDIMENT TEST PLATE



SCORING OF THE RESULTS

A. MORTALITY SCORING

PICK UP ALL THE LIVE OSTRACODS WITH A GLASS MICROPIPETTE AND TRANSFER THEM INTO ONE CUP OF THE MULTIWELL PLATE FOR "LENGTH MEASUREMENT"


SCORE THE NUMBER OF LIVE
OSTRACODS RESPECTIVELY FOUND
IN THE REFERENCE AND TEST
SEDIMENT ON THE "RESULTS SHEET"

B. LENGTH MEASUREMENT

IN SAMPLES IN WHICH THE MORTALITY IS LOWER THAN 30%, A SECOND SUBLETHAL EFFECT CRITERION (GROWTH INHIBITION) SHOW THE TOXICITY OF SEDIMENTS

AFTER THE LIVE OSTRACODS OF ALL
THE TEST CUPS HAVE BEEN TRANSFERRED
ADD ONE DROP OF LUGOL FIXATIVE TO
EACH OF THESE CUPS

- WAIT UNTIL THE OSTRACODS ARE IMMOBILE
- MEASURE THEIR LENGTH FOLLWING THE PROCEDURE INDICATED IN N° 13 & 14

OSTRACODTOXKIT F

RESULTS SHEET

Mortality (D) and length (µ) of test organisms

Name of operator : TAMING	24. RIK
Date of performance of test :	16/07/2002
(212)	241.4

			REFERENCE SEDIMENT						TEST SEDIMENT					
LENGTH	DAYO	DAY 6						DAY 6 Replicate						
	DAY 0			Rep	icate			100					1000	
Test organism		1	2	3	4	5	6	1	2	3	4	5	6	
1	200	1100	1100	1100	1100	1000	1100	850	150	800	150	800	150	
2	200	1100	1100	1000	1100	1000	1100	850	850	800	800	800	850	
3	200	1100	1000	1000	1000	1000	1100	850	600	800	800	100	700	
4	200	1100	1000	1000	1000	1000	1000	850	600	800	800	700	70	
5	200	1000	1000	1000	950	1000	1000	850	600	650	750	700	600	
6	200	1000	950	1000	950	950	900	150	600	650	700	700	600	
7	200	1000	950	900	950	950	900	650	600	650	700	700	550	
8	200	900	900	900	850	950	850	500	600	600	650	650	55	
9	200	200	900	900	950	900	850	500	М	600	650	650	M	
10	200	900	850	M	850	900	M	500	M	550	550	600	M	
	200	300	030	-	030	300								
MORTALITY				4 5 10					- Nes-I	_				
Number of dead ostracods per replicate		0	0	1	0	0	1	0	2	0	0	0	2	
Mean % mortality						Ball	THE ST	1						
per replicate Mean % mortality														
for all replicates														
Standard deviation	To State	100	1960	BUE		100	-100			DE THE		BALL OF	31	
of mean % mortality						i Air					1000			
Variation coefficient	-	Party.	Sin		B. 1									
of mean % mortality	1100			F-115	196	-300		200		- 94-1				
GROWTH	1 3													
INHIBITION				100								_		
Mean length of ostracods									13					
per replicate		BIR				1	18.5%				100	1000		
Mean length for	MARIE							THE REAL PROPERTY.		A P	-	-	403	
all replicates Mean length increment						_			-		1			
per replicate	X	100		1		130		A SUL				1		
Mean length increment	$\langle \cdot \rangle$								-		_			
for all replicates	\times													
Mean growth inhibition	$\langle \cdot \rangle$		7	~	\	~	~			W 191			1	
(in µ) for all replicates	X	X	X	X	X	X	X							
wean % growth inhibition									147	1011			-	
in test sediment	/	//	/\	/	/	/	/	Ball In						

42

- SCORE THE LENTGH RESULTS ON THE "RESULTS SHEET"
- PERFORM THE DATA TREATMENT OF THE RESULTS WITH AN APPROPRIATE PROGRAM