Extending the molecular application range of gas chromatography by in-injector pyrolysis

Erwin Kaal, Geert Alkema and Hans-Gerd Janssen

University of Amsterdam, the Netherlands ATAS GL, the Netherlands Unilever Research and Development, the Netherlands

Introduction gas chromatography

Advantages of GC

- High separation power
- Sensitivity
- Speed
- Easy identification of unknowns
- Not expensive

Limitations of GC

- Degradation of thermo labile compounds
- Polar compounds needs derivatization
- Mass limitations (>800-1000 Da)

GC- versus LC-application area

Bringing more molecules into realm of GC

Bringing more molecules into realm of GC

Ref: H.G. Janssen, E. Kaal, J. Chrom. A 1201 (2008) 169

Bringing more molecules into realm of GC

Extending the applicability

- 1. Automation
 - pyrolysis

Automated pyrolysis: in-injector pyrolysis for solid samples

- 1. Put solid sample in a (micro vial of the) liner
- 2. Transport liner with sample into OPTIC injector with LINer EXchanger (LINEX)
- 3. Seal and purge the injector
- 4. Apply pyrolysis by heating the injector by 30 $^\circ\,$ C/sec to 600 $^\circ\,$ C
- 5. Dispose micro vial after analysis, clean and re-use liner

Automation pyrolysis: Liquid injection of dissolved polymer

- 1. Sample is homogenious
- 2. Easy to inject quantitative amounts
- 3. Easy to inject low amounts
- 4. Pyrolysis direct on top of column

Parameters to consider in Py-GC-MS using PTV-injector

- Repeatability pyrolysis:
 - Large volume liquid injection
 - Approx. 100 µg/ml
 - Pyrolysis temp. 550 °C
 - For PMMA, PS, PBA, PCL: RSD < 4% (n=20)</p>
- Linearity pyrolysis:
 - Large volume liquid injection
 - 0-170 µg/ml (7 standards)
 - For PMMA and PS: r²: >0.999
- Influence MW:
 - Large volume liquid injection
 - 7 standards with different MW (2,000 1,500,000)
 - For PMMA and PS: RSD < 4%</p>

Ref: E. Kaal et al; J. Chrom. A 1143 (2007) 182

Example of Py-GC-MS with Optic 3 injector

40 µl of 0,1 µg/ml dissolved copolymer

Extending the applicability

1. Automation:

- pyrolysis: solid samples \rightarrow LINEX dissolved samples \rightarrow 'normal' injection

- thermochemolysis

thermochemolysis: combined derivatization and pyrolysis

Principle: pyrolysis with *in-situ* thermally assisted derivatization

Advantages:

- Simple sample preparation
- Very fast and robust
- Pyrolysis can occur at lower temperatures (less unexpected secondary reaction products)

Difficulties:

- Quantification (also non-derivatized compounds detected)
- Repeatability of the derivatization?
- Process not well understood

Most used reagent: tetramethyl ammonium hydroxide (TMAH) \rightarrow hydrolysis followed by methylation

thermal methylation (THM)

- 10 µg to 1 mg
- 2 µl to 1 ml solution (25% TMAH) water or methanol
- vacuum or oven
- Inert conditions
 - → 10 min to 27 hours (100 to 250 °C)
 - commonly dichloromethane
 - N₂ stream
 - → 1 or 2 µl

thermal methylation (THM)

Fully automated in-situ thermochemolysis

Ref: E. Kaal et al; J. Chrom. A 1201 (2008) 169

Optimization and performance THM-procedure

Injection volume: 40 µl (sample) Injection volume: 50 µl (reagens) Conc. sample: 10-200 µg/ml Conc. TMAH: 2% (50 µl) Pyrolysis temp. 550 °C

Influence temperature on thermochemolysis process

|--|

(sum of 30 peaks)

<u>Sample materials:</u>	RSD (n=20)
Polysaccharides	7.6%
PA/PAH copolymer	3.2%
Proteins	5.6%
Lignins	5.9%
Celluloses	7.6%

Difference PA and PA-PAH copolymer

THM-GC of polysaccharide (Mw 45.000)

THM-GCxGC-TOF-MS of polysaccharide Pullulan 710.000Da

THM-GC of hydroxypropyl methyl cellulose

Comparison HPM-cellulose THM – GCxGC-TOF-MS

HPM-cellulose nr. 4

HPM-cellulose nr. 7

Comparison HPM-cellulose THM – GCxGC-TOF-MS

HPM-cellulose nr. 4

HPM-cellulose nr. 7

Correlating fingerprints and product properties

Characterization of Sulphonated lignins

1D THM-GC of sulfonated lignins

2D THM – GCxGC of lignosulfonate

Sample A

Sample B

2D THM – GCxGC of lignosulfonate

Sample A

Sample B

Summary

- The applicability of GC can be extended by the automation of THM and Pyrolysis
- Optic injector can be used as a pyrolyser, for solid and as well as for liquid samples
- THM Py-GC-MS of relative simple biopolymers can results in complex data
- Combination pyrolysis or THM with GCxGC-TOF-MS provides very detailed sample information

Acknowledgements

ATAS GL International

Polymer analysis group (University of Amsterdam)

Dr. S. de Koning (Leco)

