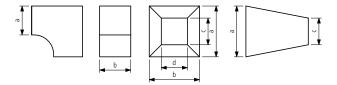
We reserve the right to make changes in the dimensions and technical data products due to their continuous improvement

About the System

We present you a production range of rectangular ducts and fittings.

The catalogue includes rectangular ducts and fittings with dimensions as required by the standard:

PN-EN 1505:2001 (Straight Rectangular Sheet metal Ventilation Ducts and Fittings), and all standards referenced therein. The area of ventilation ducts and fittings is measured in accordance with DIN 18379 (German Construction Contract Procedures. Part C: General Technical Specifications For


Building Works – Room Ventilation Systems). They are used in low and medium pressure building ventilation and

air-conditioning systems. Stainless steel or aluminium ducts and fittings can be fabricated on request where better protection against corrosion is needed. We also offer unusual fittings, not included in the catalogue, based on your drawing.

Dimensions

The nominal dimension, which is conventionally used to identify and calculate straight ducts and fittings, corresponds to the internal dimensions of sides a and b, where a stands for the visible side (see figure 1). The side lengths of the minor end of the transition fitting are identified as c and d, where c stands for the visible side.

Dimension L represents the useful length of the straight duct, i.e. a dimension that affects the total length of duct system. Dimension I represents the useful length of the fitting, i.e. a dimension that affects the total length of duct system.

Dimensions of rectangular ducts and fittings are treated as standard from 130 mm to 2500 mm size of any side. Ducts and fittings with a smaller or larger size in relation to the stated subject to a special order. Imposition of the entire surface, and the term of the contract shall be determined on an individual basis.

Air Tightness

The ventilation ducts are manufactured in two tightness classes as defined in the standards: PN-B-76001 (Ventilation Ducts – Air Tightness, Requirements and Testing) and PN-EN 1507 (Building Ventilation – Straight Rectangular Ventilation Ducts and Fittings – Duct Strength and Air Tightness Requirements): tightness class A: for normal designs – typically; tightness class B: for designs with enhanced air tightness

Air Leskage limit		Static pressure limits (p,) Pa				
$(f_{max}) m^3 s^1 m^2$	Negative pressure for all classes	Overpres 1	sure for ti 2	he dasses 3		
$0,027 \times p_{test}^{0,65} \times 10^{-3}$	200	400				
$0,009 \times p_{test}^{0,65} \times 10^{-3}$	500	400	1000	2000		
$0,003 \times p_{test}^{0,65} \times 10^{-3}$	750	400	1000	2000		
$0,001 \times p_{test}^{0,65} \times 10^{-3}$	750	400	1000	2000		
	$\begin{array}{c} 0,027\times p_{test}^{0,65}\times 10^{-3}\\ 0,009\times p_{test}^{0.65}\times 10^{-3}\\ 0,003\times p_{test}^{0.65}\times 10^{-3} \end{array}$	Leakage limit (f_{max}) $m^3 s^3 m^2$ Negative pressure for all classes $0,027 \times p_{test}^{-0.65} \times 10^{-3}$ 200 $0,009 \times p_{test}^{-0.65} \times 10^{-3}$ 500 $0,003 \times p_{test}^{-0.65} \times 10^{-3}$ 750	Leakage limit (f_{max}) $m^3s^3m^2$ Negative pressure for all classes Output 1 $0,027 \times p_{test}^{0.65} \times 10^{-3}$ 200 400 $0,009 \times p_{test}^{0.65} \times 10^{-3}$ 500 400 $0,003 \times p_{test}^{0.65} \times 10^{-3}$ 750 400	Leakage limit (f_{max}) $m^3s^7m^2$ Negative pressure for all classes Overpressure for ti 1 0,027 × $p_{test}^{0.65} × 10^{-3}$ 200 400 0,009 × $p_{test}^{0.65} × 10^{-3}$ 500 400 1000 0,003 × $p_{test}^{0.65} × 10^{-3}$ 750 400 1000		

*Special purpose ducts

Design

The rectangular ducts and fittings are designed with slip-fit connections, either welded or button punched. The ducts and fittings are available in low and medium pressure versions (minimum negative pressure/maximum overpressure):

- design class N (low pressure design): it is a standard design ranging from -400Pa to +1000Pa
- design class S (medium pressure design): from -1000Pa to 2500Pa

Deviations and sheet metal thickness are selected based on: • length of the longer side of the straight duct

• length of the longest side of the connection cross-section of the fitting

The table below shows allowable deviations and minimum sheet metal thicknesses for individual dimensions .

length of the longer side [mm]	allowable devia- tions of the duct side [mm]	initial sheet	class S minimum sheet metal thickness [mm]
100-500	0-4	0,6	0,7
501–1000	0-4	0,8	0,9
1001–2000	0-4	1	1,1
2001-4000	0–5	1,1	1,2

The rectangular components can be made of other materials, such as acid-proof or aluminium sheet

length of the longer side [mm]	acid-proof sheet	aluminium sheet
100 - 500	0,6	0,8
501 - 1000	0,6	0,8
1001 - 2000	0,8	1,0

ALNOR® ventilation systems

Tolerances and Deviations

For straight ducts, the tolerance of length L is $\pm 0.005L$ Angle tolerance is $\pm 2^{\circ}$.

Deviations from values a, b, c, d, e and f range from 0mm to -4mm $% \left({{{\rm{T}}_{{\rm{m}}}}_{{\rm{m}}}} \right)$

Duct dimensions, which include matching cross-section fields Ac, hydraulic diameter dh, equivalent diameter de and duct area per metre A, are shown in table 3.

Table 3 (below)

Duct dimensions and values as required by the PN-EN 1505 standard (Straight Rectangular Sheet metal Ventilation Ducts and Fittings)..

Labelling

ALNOR products are furnished with the construction industry's B sign and product codes according to their technical specifications contained in this catalogue.

Rectangular ducts and fittings have the hygiene certificates: a) HK/B/1652/03/2007 for those made of aluminium sheet b) HK/B/1652/01/2007 for those made of galvanised or acid-proof sheet

side length [mm]	100	150	200	250	300	400	500	600	800	1000	1200	
200	0,02	0,03	0,04									A _c
	133	171	200									d_{h}
	149	186	218									$d_{_{\mathrm{e}}}$
	0,6	0,7	0,8									A
250	0,025	0,038	0,05	0,063								A _c
	143	188	222	250								d_{h}
	165	206	241	273								d_{e}
	0,7	0,8	0,9	1								A
300	0,03	0,045	0,06	0,075	0,09							A _c
	150	200	240	273	300							d _h
	180	224	262	296	327							d _e
	0,3	0,9	1	1,1	1,2							A
400	0,04	0,06	0,08	0,1	0,12	0,16						A _c
	160	218	267	308	343	400						d _h
	205	255	299	337	373	436						d_{e}
	1	1,1	1,2	1,3	1,4	1,6						A
500		0,075	0,1	0,13	0,15	0,2	0,25					A _c
		231	286	333	375	444	500					d_{h}
		283	331	374	413	483	545					$d_{_{\mathrm{e}}}$
		1,3	1,4	1,5	1,6	1,8	2					A
600		0,09	0,12	0,15	0,18	0,24	0,3	0,36				A _c
		240	300	353	400	480	545	600				d_{h}
		307	359	406	448	524	592	654				$d_{_{\mathrm{e}}}$
		1,5	1,6	1,7	1,8	2	2,2	2,4				A
800			0,16	0,2	0,24	0,32	0,4	0,48	0,64			A _c
			320	381	436	533	615	686	800			d _h
			410	463	511	598	675	745	872			d _e
			2	2,1	2,2	2,4	2,6	2,8	3,2			A

Tolerances and Deviations

Table 3 (cont)

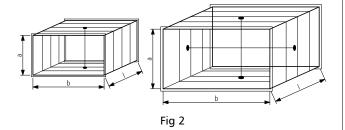
Duct Dimensions and Measures

	1200	1000	800	600	500	400	300	250	200	150	100	side length [mm]
A		1	0,8	0,6	0,5	0,4	0,3	0,25				1000
d _h		1000	889	750	667	571	462	400				
de		1090	965	825	747	662	566	512				
A		4	3,6	3,2	3	2,8	2,6	2,5				
A	1,44	1,2	0,96	0,72	0,6	0,48	0,36					1200
d _h	1200	1091	960	800	706	600	480					
de	1308	1184	1049	896	812	719	614					
A	4,8	4,4	4	3,6	3,4	3,2	3					
A	1,68	1,4	1,12	0,84	0,7	0,56						1400
d _h	1292	1167	1018	840	737	622						
de	1403	1270	1125	962	871	771						
A	5,2	4,8	4,4	4	3,8	3,6						
A	1,92	1,6	1,28	0,96	0,8	0,64						1600
d _h	1371	1231	1067	873	762	640						
de	1491	1350	1195	1022	925	819						
A	5,6	5,2	4,8	4,4	4,2	4						
A	2,16	1,8	1,44	1,08	0,9							1800
d _h	1440	1286	1108	900	783							
de	1573	1424	1261	1078	976							
A	6	5,6	5,2	4,8	4,6							
A	2,4	2	1,6	1,2	1							2000
d _h	1500	1333	1143	923	800							
de	1650	1494	1323	1131	1024							
A	6,4	6	5,6	5,2	5							

The area of the cross-section is the product of multiplying the lengths of sides a and b.

The area of the duct is the product of multiplying the internal perimeter and the length of the duct.

Hydraulic diameter: in relation to the rectangular duct, it is a diameter of the round duct at which pressure loss is the same for identical air flow rates and friction factors.


Formula $d_h = 2 \times a \times b/a + b$.

Equivalent diameter: in relation to the rectangular duct, it is a diameter of the round duct at which pressure loss is the same for identical air flow rates and friction factors.

ALNOR® ventilation systems

Rigidity

The rectangular ducts and fittings are made more rigid through transverse corrugation of sheet metal. In addition, the ducts are stiffened with galvanised stiffening rods as shown in figure 2.

How to increase the rigidity of ventilation ducts is presented in table 4.

Table 4

How to increase the rigidity of ventilation ducts with stiffening rods

A (mm)	B (mm)	L (mm)	number of stiffening rods
<1000	<1000	<1000	0
<1000	≥1000	<1000	1
<1000	1000–1500	<1000	2
<1000	1500–2000	1500–2000	4
1000–1500	1000–1500	<1000	one cross
1000–1500	1000–1500	1000–1500	two crosses

The bends and bends are stiffened with turning vanes as required by the PN-EN 1505 standard (Straight Rectangular Sheet metal Ventilation Ducts and Fittings).

Bends are advisable for systems with low flow rates/pressures and smaller side lengths a < 400mm. Turning vanes are not required for bends and bends with angles <45°.

How to adjust turning vanes is shown in table 5 and figure 3.

Ventilation Duct Area

The area of rectangular ventilation ducts is measured in accordance with DIN 18379 (German Construction Contract Procedures. Part C: General Technical Specifications For Building Works – Room Ventilation Systems).

The ducts measuring less than 1.0 m^2 in area are classified as fittings with an area of 1.0 m^2 . The fittings measuring less than 1.0 m^2 in area are classified as fittings with an area of 1.0 m^2 .

Designing

For your ease of designing ventilation systems, an AutoCAD add-on called Wentyle has been developed to support system drawing and calculations. The software is distributed free of charge. Components of the program's database have the same identification codes as in our catalogue.

Connections

Ventilation ducts are joined together as required by the PN-B-760012 standard (Connections of Sheet metal Ventilation Equipment, Ducts and Fittings). Mounting frames with sheet metal joining profiles and corners are used to connect ventilation ducts with rectangular pieces of duct system. The profile size depends on the length of the side.

How to use mounting frames with rectangular ducts and fittings is shown in table 6.

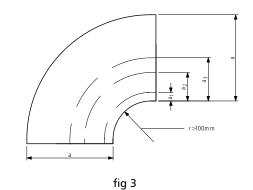
Table 5

How to use mounting frames with ventilation ducts and fittings in standard galvanised sheet metal designs

length of the side [mm]	≤1000	>1000	>2500
profile size	P20	P30	P40

Corners and sealing profiles are sealed with modelling clay.

Acid-proof steel mounting frames and corners are generally used for the acid-proof sheet ducts and fittings, and aluminium mounting frames and corners for the aluminium ducts and fittings.


How to use mounting frames with the ventilation ducts and fittings on standard acid-proof or aluminium sheet designs

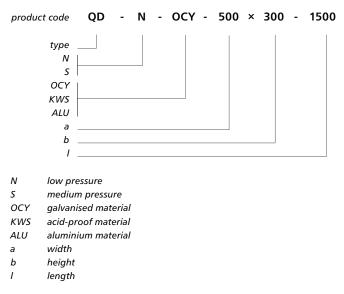
length of the side [mm]	≤1000	>1000	>2500
profile size	PQ20	PQ30	PQ30

Table 6

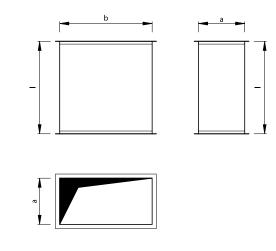
Layout of turning vanes as required by the PN-EN 1505 standard (Straight Rectangular Sheet metal Ventilation Ducts and Fittings).

width of duct a [mm]]	number of turning	distance between turning vanes [mm]				
	vanes	a ₁	a ₁	a ₁		
> 400 ≤ 800	1	a/3				
> 800 ≤ 1600	2	a/4	a/2			
> 1600 ≤ 2000	3	a/8	a/3	a/2		

Duct


Description

On its ends the rectangular duct has mounting frames with sheet metal joining profiles and is stiffened with transverse sheet corrugation. In addition, depending on its size, it is stiffened with galvanised rods. For the purpose of production, transport and installation standardisation, the ducts are fabricated in the following sections:

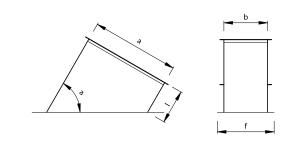

If a or b < 500, then L = 1250mm

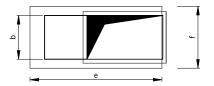
If a or b > 500, then L = 1500mm

Example identification

Dimensions

Description


If the duct is to be closed otherwise than with an end cover, please specify the following as your remarks: LR – loose end cover BR – no end cover Z – end cap

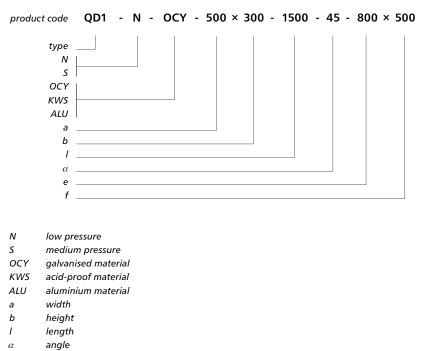

Inclined Rectangular Duct

<u>Download Wentyle</u> <u>Download AlnorCAM</u> <u>Buy via B2B</u>

Dimensions

Description

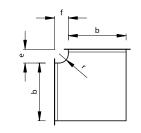
Inclined rectangular duct of roof hood type, provided on one end with a sheet metal profile. A base of any size can be attached to the other end. The inclination angle of the hood ranges from 90 to 100 degrees, depending on request.

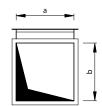

Example identification

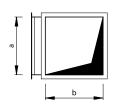
dimension of base a

dimension of base b

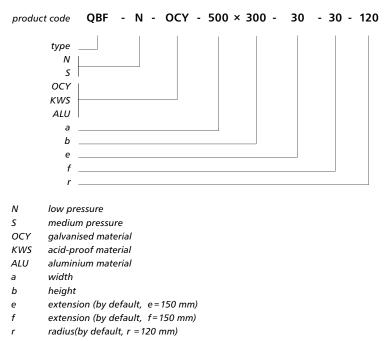
е


f




Bend QBF

Dimensions



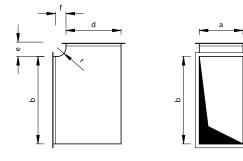
Description

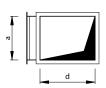
On its ends the 90° bend has mounting frames with sheet metal joining profiles and is stiffened with transverse sheet corrugation. Bends are advisable for systems with low flow rates/pressures and smaller side lengths b < 400mm. Generally, r = 120mm.

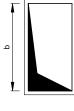
An bend is usually used to divert the direction of the duct system by 90 degrees without changing the cross-section of the duct.

Example identification

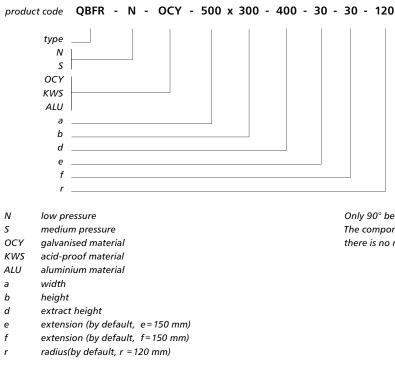
Only 90° bends are available.


The components are usually fabricated with standard dimensions, and there is no need to specify them.


Variable Cross-Section Bend BFR


Download Wentyle Download AlnorCAM Buy via B2B

Dimensions



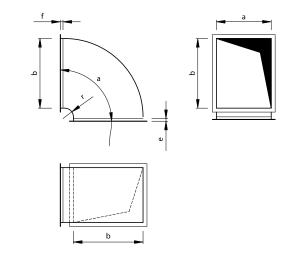
Description

On its ends the 90° bend has mounting frames with sheet metal joining profiles and is stiffened with transverse sheet corrugation. Bends are advisable for systems with low flow rates/pressures and smaller side lengths b < 400 mm. Generally, r = 120mm. An bend is usually used to divert the direction of the duct system by 90 degrees while changing the dimensions of the duct.

Example identification

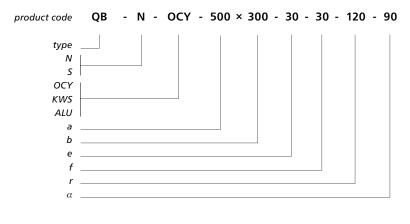
Only 90° bends are available. The components are usually fabricated with standard dimensions, and there is no need to specify them.

ALNOR® ventilation systems


Bend **QB**

Description

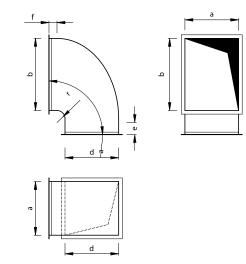
On its ends the standard 90° bend has mounting frames with sheet metal joining profiles, outer and inner corners, and is stiffened with transverse sheet corrugation. Bends are advisable for systems with high flow rates/pressures and greater side lengths b > 400mm. Standard radius r = 120mm. Standard angle $a = 90^{\circ}$.


Dimensions

Description

A bend is usually used to divert the direction of the duct system by an angle while maintaining the cross-section of the duct.

Example identification


- N low pressure
- S medium pressure
- OCY galvanised material
- KWS acid-proof material
- ALU aluminium material a width
- a width b height
- e extension (by default, e=30 mm)
- f extension (by default, f=30 mm)
- r radius(by default, r = 120 mm)
- α angle (default angle = 90°)

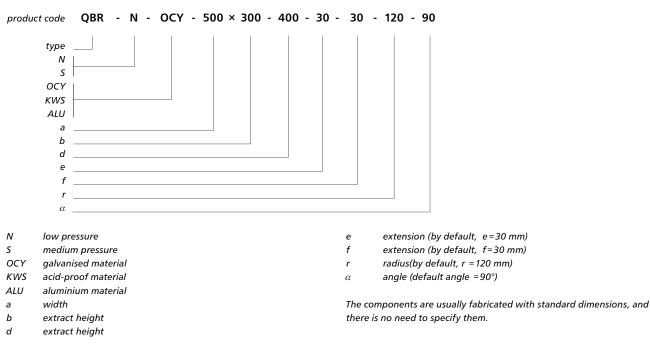
Variable Cross-Section Bend

Download Wentyle Download AlnorCAM Buy via B2B

Dimensions

Description

An Bend is usually used to divert the direction of the duct system by 90 degrees while changing the dimensions of the duct.


Description

On its ends the standard 90° bend has mounting frames with sheet metal joining profiles, outer and inner corners, and is stiffened with transverse sheet corrugation.

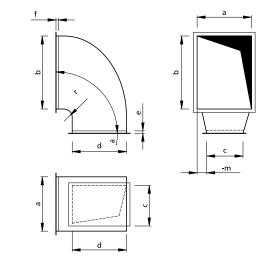
Bends are advisable for systems with high flow rates/pressures and greater side lengths b > 400 mm.

Standard radius r = 120 mm.Standard angle $\alpha = 90^{\circ}$

Example identification

ALNOR® ventilation systems

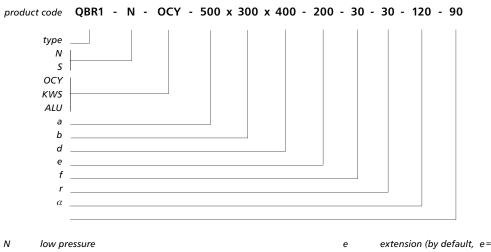
Diffuser Bend)BR1



Description

On its ends the standard 90° bend has mounting frames with sheet metal joining profiles, outer and inner corners, and is stiffened with transverse sheet corrugation. Bends are advisable for systems with high flow rates/pressures and greater side lengths a > 400mm.

Standard radius r = 120mm Standard angle $\alpha = 90^{\circ}$


Dimensions

Description

An bend is usually used to divert the direction of the duct system by 90 degrees while changing the dimensions of the duct in two planes. No turning vanes are used in diffuser bends. Component reinforcement upon request.

Example identification

- S medium pressure OCY
- galvanised material ĸws acid-proof material
- ALU aluminium material
- а outlet width
- b extract height
- с outlet width
- extract height d

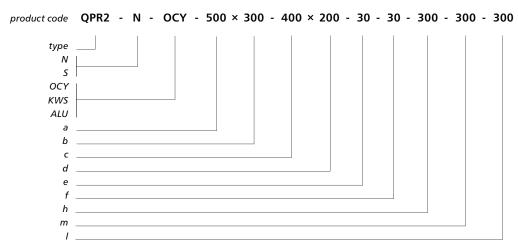
- extension (by default, e=30 mm)
- extension (by default, f=30 mm)
- radius(by default, r = 120 mm) r
- angle (default angle =90°) α

ALNOR® ventilation systems is a legally protected trademark and technical patent. All rights reserved.

The components are usually fabricated with standard dimensions, and there is no need to specify them.

Eccentric Reducer

Download Wentyle Download AlnorCAM Buy via B2B



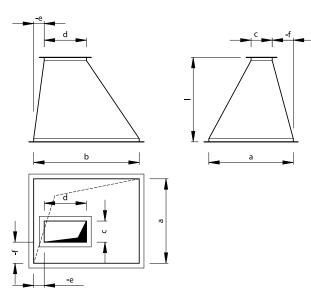
Description

The reducer is used to join two rectangular ducts, each with different rectangular dimensions.

On its ends it has mounting frames with sheet metal joining profiles and is stiffened with transverse sheet corrugation. It enables to design a ventilation system with all dimensions freely changeable and any offset in both directions.

Example identification

Ν	low pressure
S	medium pressure
ΟϹϒ	galvanised materia
KWS	acid-proof materia
ALU	aluminium materia
а	inlet width

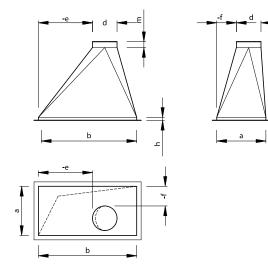

- b inlet height
- c outlet width
- d extract height

- e vertical shift
- f horizontal shift
- h extension (by default, h=30 mm)
- m extension (by default, m=30 mm)
 - length

1

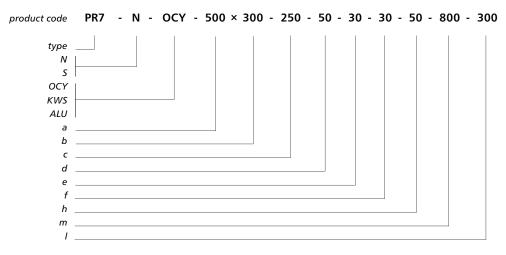
The components are usually fabricated with standard dimensions, and there is no need to specify them.

Dimensions


ALNOR® ventilation systems

Eccentric Rectangular-to-Round Reducer **PR7/PRL7**

Download Wentyle Download AlnorCAM Buy via B2B

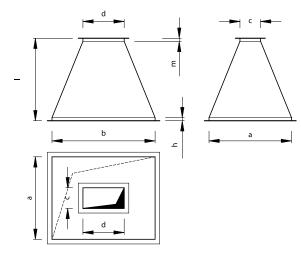

Dimensions

Description

The conversion is used to change the cross-section of the duct system from rectangular to round. The fitting enables to design a ventilation system with all dimensions freely changeable and any offset in both directions. The round take-off has usually a male end. The PRL7 fitting comes with a gasketed male end.

Example identification

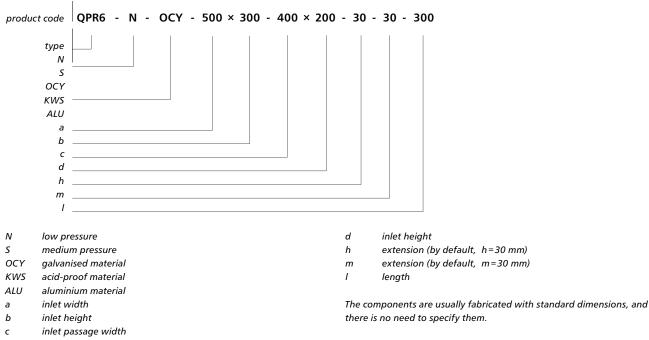
- d diameter
- e vertical shift
- f horizontal shift
- h extension (by default, h = 30 mm)
- m extension (by default, m = 50 mm)
- I length


The components are usually fabricated with standard dimensions, and there is no need to specify them.

Concentric Reducer

<u>Download Wentyle</u> <u>Download AlnorCAM</u> <u>Buy via B2B</u>

Dimensions

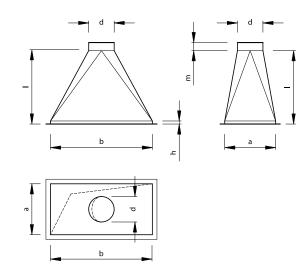


Description

The reducer is used for joining two rectangular ducts with different dimensions.

On its ends it has mounting frames with sheet metal joining profiles and is stiffened with transverse sheet corrugation. It enables to design a ventilation system by reducing its crosssection concentrically. The axes of both dimensions match each other.

Example identification


ALNOR® ventilation systems

Concentric Rectangular-to-Round Reducer **PR1/PRL1**

Download Wentyle Download AlnorCAM Buy via B2B

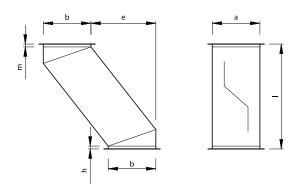
Dimensions

Description

The conversion is used to change the cross-section of the duct system from rectangular to round. The fitting enables to maintain the concentricity of the duct system, i.e. the axes of the rectangular and the round dimensions match each other. The rectangular take-off is typically provided with an end cover. The round take-off has usually a male end. The PRL1 fitting comes with a gasketed male end.

Example identification

nrodu	tt code PR1 - N - OCY - 500 × 300 - 250 - 3	0 - 30 -	800
<i>p:</i>	type N		
	OCY KWS ALU		
	a b		
	d		
	Γ		
PR1	without gasket	d	diameter
PRL1	with gasket	h	extension (by default, h = 30 mm)
Ν	low pressure	т	extension (by default, m = 50 mm)
S	medium pressure	Ι	length
ΟϹϒ	galvanised material		
KWS	acid-proof material	The co	omponents are usually fabricated with standard dimensions, and
ALU	aluminium material	there	is no need to specify them.
а	width		
b	height		


ALNOR® ventilation systems

Setoff QPR3

Download Wentyle Download AlnorCAM Buy via B2B

Dimensions

Description

The variable cross-section offset is used to bypass any obstructions in the ventilation system while changing the height of the duct, e.g. at duct crossings. On its ends it has mounting frames with sheet metal joining profiles and is stiffened with transverse sheet corrugation. To ensure proper air flow, it is recommended to select appropriate dimensions for length L and deviation e.

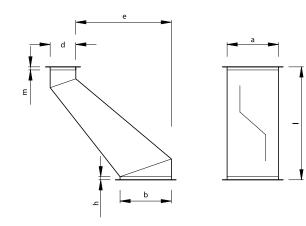
Example identification

produc	t code	QPR3	-	N -	ОСҮ	- 5	500 ×	300 ·	- 100	- 30	- 30	- 800
	type											
N S OCY KWS ALU	galvanis acid-pro	ssure n pressur sed mate pof mate um mate	erial erial								e h m I	shift extens extens length
a	width										The o	componen

b height nsion (by default, h = 30 mm)

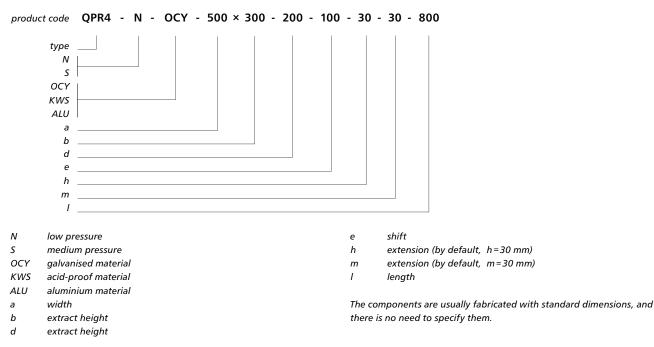
nsion (by default, m = 30 mm)

nts are usually fabricated with standard dimensions, and there is no need to specify them.


ALNOR® ventilation systems

Variable Cross-Section Setoff **QPR4**

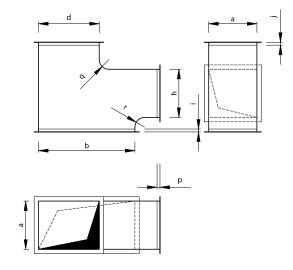
Download Wentyle Download AlnorCAM Buy via B2B


Dimensions

Description

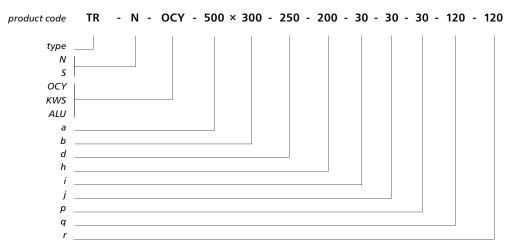
The variable cross-section offset is used to bypass any obstructions in the ventilation system while changing the height of the duct, e.g. at duct crossings. On its ends it has mounting frames with sheet metal joining profiles and is stiffened with transverse sheet corrugation. To ensure proper air flow, it is recommended to select appropriate dimensions for length L and deviation e.

Example identification



Symmetric T-piece

Download Wentyle Download AlnorCAM Buy via B2B


Dimensions

Description

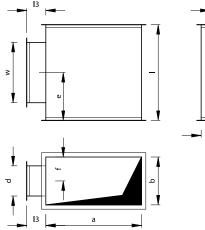
On its ends the T-piece has mounting frames with sheet metal joining profiles and is stiffened with transverse sheet corrugation. The fitting enables to design a ventilation system with a 90 degree tap. T-piece height a is fixed.

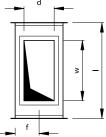
Example identification

Ν	low pressure
S	medium pressure
ΟϹϒ	galvanised material
KWS	acid-proof material
ALU	aluminium material
а	width
b	inlet height
d	inlet height
h	outlet height

- *i* extension (by default, *i*=30 mm)
- j extension (by default, j=30 mm)
- p extension (by default, p=30 mm)
- q radius (by default, q=120)
- r radius(by default, r = 120)

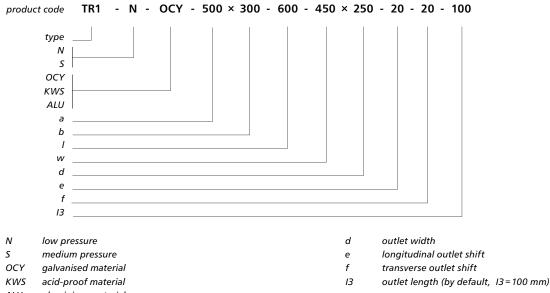
The components are usually fabricated with standard dimensions, and there is no need to specify them.


ALNOR® ventilation systems


T-piece with Rectangular Outlet **TR1**

Download Wentyle Download AlnorCAM Buy via B2B

Dimensions

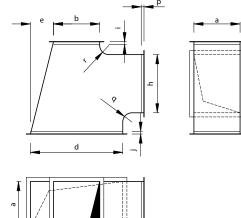


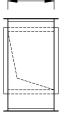
Description

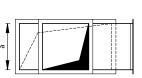
On its ends the T-piece has mounting frames with sheet metal joining profiles and is stiffened with transverse sheet corrugation. The T-piece enables to design a ventilation system with a 90 degree tap and an outlet reduction. The inlet and passage are fixed.

Example identification

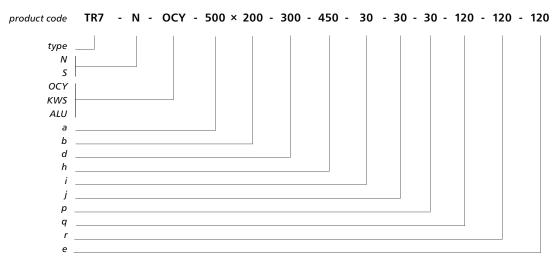
The components are usually fabricated with standard dimensions, and there is no need to specify them.


- ALU aluminium material
- a height
- b width
- l length
- w outlet length




Download Wentyle Download AlnorCAM Buy via B2B

Dimensions


Rectangular ducts and fittings

Description

Tapered T-piece

On its ends the T-piece has mounting frames with sheet metal joining profiles and is stiffened with transverse sheet corrugation. The T-piece enables to design a ventilation system with a 90 degree tap and an outlet reduction with outlet offset by any value m.

Example identification

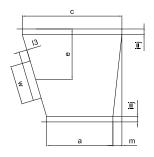
- Ν low pressure medium pressure S
- ΟCΥ galvanised material KWS acid-proof material aluminium material
- ALU а width
- b inlet height
- extract height d
- е shift

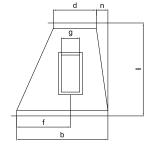
- outlet height h
 - extension (by default, i=30 mm)
- extension (by default, j=30 mm)
- extension (by default, p=30 mm) р q
 - radius (by default, q=120)
- radius(by default, r = 120)

The components are usually fabricated with standard dimensions, and there is no need to specify them.

ALNOR® ventilation systems

i


i


Concentric Taper T-piece **TR8**

Dimensions

Description

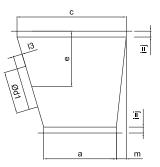
w

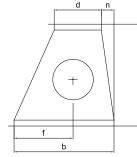
outlet length

On its ends the T-piece has mounting frames with sheet metal joining profiles and is stiffened with transverse sheet corrugation. The T-piece enables to design a ventilation system with a 90 degree tap and an outlet reduction with outlet offset by any value m. In addition, the outlet can have a different height than the T-piece.

Example identification

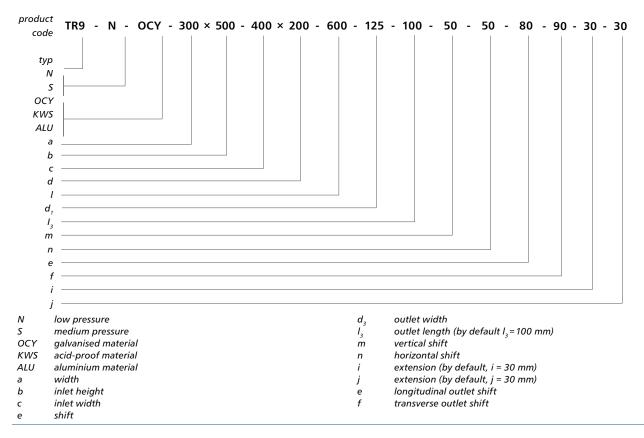
product Tr code Typ N			× 150 - 100 - 50 - 50 - 80 - 90 - 30 - 30
J N S OCY KWS ALU a b c d e I	low pressure medium pressure galvanised material acid-proof material aluminium material width inlet height inlet width extract height shift height		outlet height outlet width outlet length (by default I3 = 100 mm) vertical shift horizontal shift extension (by default, i = 30 mm) extension (by default, j = 30 mm) longitudinal outlet shift transverse outlet shift romponents are usually fabricated with standard nsions, and there is no need to specify them.


ALNOR® ventilation systems


Symmetric Taper T-piece **TR9**

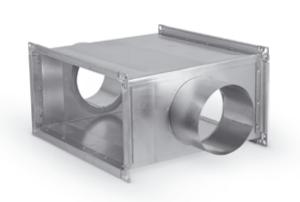
<u>Download Wentyle</u> <u>Download AlnorCAM</u> <u>Buy via B2B</u>

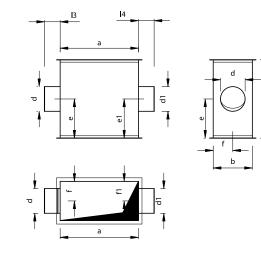
Dimensions



Description

On its ends the concentric taper T-piece has mounting frames with sheet metal joining profiles and is stiffened with transverse sheet corrugation. The round outlet has typically a male end and is concentrically provided on one side. The T-piece enables to design a ventilation system with a round angled branch, but this angle depends on the inclination of the side wall from which the branch projects.

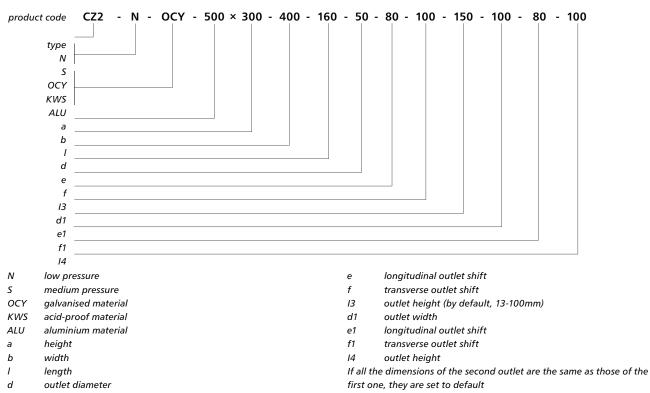

Example identification


ALNOR® ventilation systems

X-piece with Round Taps

Download Wentyle Download AlnorCAM Buy via B2B

Dimensions

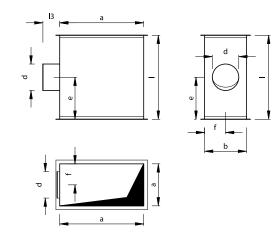


Description

On its ends the X-piece with round taps has mounting frames with sheet metal joining profiles and is stiffened with transverse sheet corrugation.

The round taps are typically provided concentrically. The taps have typically male ends, and upon request they can be supplied as CZL2, where the male end is gasketed.

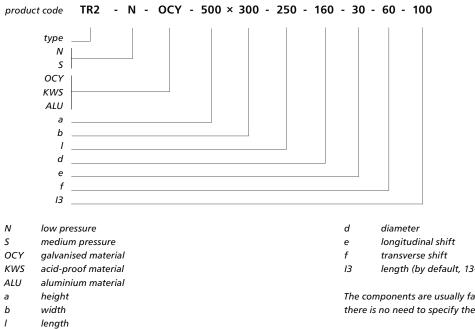
Example identification


ALNOR® ventilation systems

T-piece with Round Tap R7

Download Wentyle Download AlnorCAM Buy via B2B

Dimensions


Description

On its ends the T-piece with round tap has mounting frames with sheet metal joining profiles and is stiffened with transverse sheet corrugation.

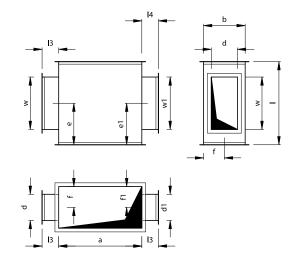
The round tap is typically provided concentrically.

The tap has typically a male end, and upon request it can be supplied as TRL2, where the male end is gasketed.

Example identification

length (by default, 13-100mm)

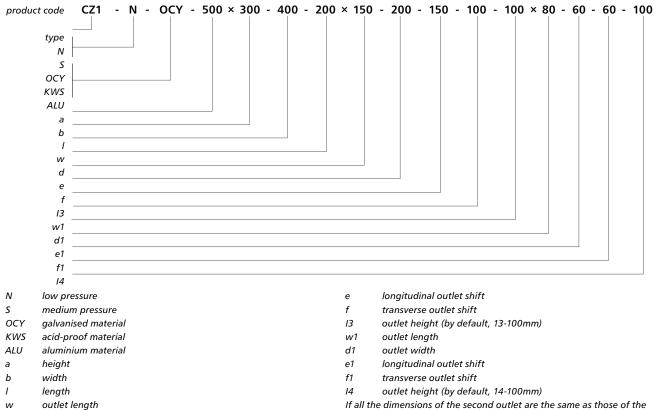
The components are usually fabricated with standard dimensions, and there is no need to specify them.


ALNOR® ventilation systems

X-piece with Rectangular Tap

Download Wentyle Download AlnorCAM Buy via B2B

Description

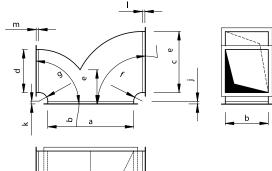

d

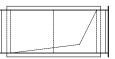
outlet width

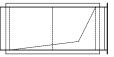
On its ends the X-piece has mounting frames with sheet metal joining profiles and is stiffened with transverse sheet corrugation.

The X-piece enables to design a ventilation system with 90 degree taps.

Example identification


If all the dimensions of the second outlet are the same as those of the first one, they are set to default


Concentric Y-Branch rr3


Download Wentyle Download AlnorCAM Buy via B2B

Dimensions

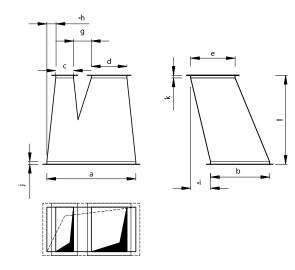
Description

On its ends the concentric Y-branch has mounting frames with sheet metal joining profiles and is stiffened with transverse sheet corrugation. It enables to design a ventilation system with two taps directed at any angle. Turning vanes can be used.

Example identification

product code TR3	8 - N - OCY - 500 × 300 - 300 - 200 - 100 - 120 - 120 - 90 - 90 - 30 - 30 - 30 - 30
type N S OCY KWS ALU a	
d	
j k I	

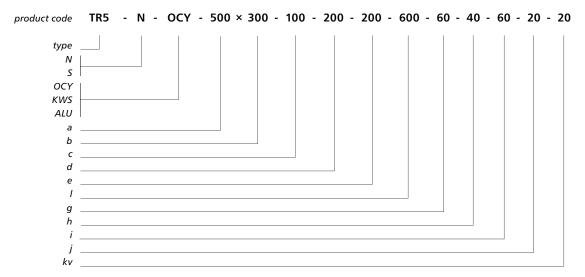
Ν	low pressure	е	base length
S	medium pressure	f	radius (by default, f=120)
ОСҮ	galvanised material	g	radius (by default, g=120)
KWS	acid-proof material	β	angle (default angle =90°)
ALU	aluminium material	α	angle (default angle =90°)
а	height	j	extension (by default, j=30 mm)
b	width	k	extension (by default, k=30 mm)
с	outlet height 1	1	extension (by default, 1=30 mm)
d	outlet height 2	т	extension (by default, m=30 mm)
	-		


ALNOR® ventilation systems

Eccentric Variable Cross-Section Pant T-piece R5

Download Wentyle Download AlnorCAM Buy via B2B

Dimensions


Description

On its ends the eccentric pant T-piece has mounting frames with sheet metal joining profiles, outer and inner corners, and is

stiffened with transverse sheet corrugation.

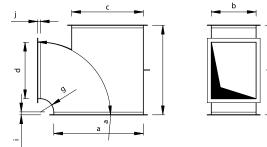
It enables to split the the air flow into two parallel branches.

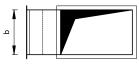
Example identification

- Ν low pressure
- S medium pressure
- ΟCΥ galvanised material KWS acid-proof material
- ALU aluminium material
- а height
- b inlet width
- left passage height с
- d right passage height

- outlet width е
- 1 length

i


- distance between taps q
- h horizontal shift
 - vertical shift
- j extension (by default, j=30 mm)
- extension (by default, k=30 mm) k


Bend T-piece rr4

Download Wentyle Download AlnorCAM Buy via B2B

Description

KWS

ALU

а b acid-proof material

aluminium material

height

width

On its ends the bend T-piece has mounting frames with sheet metal joining profiles, outer and inner corners, and is stiffened with transverse sheet corrugation.

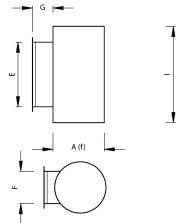
The bend tap enables uniform air distribution with turning vanes to prevent air whirls in the duct.

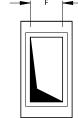
Example identification

product code	TR4	- N	- OCY	- 500 ×	300 -	300 -	200 - 60	00 - 20 - 9	90 - 30 - 30
type N S									
OCY KWS									
ALU a									
b c d									
l g									
α j									
k N low la	ressure						c	passage ł	neiaht
S mediu	im pressur nised mate						d I	outlet he length	-

- length

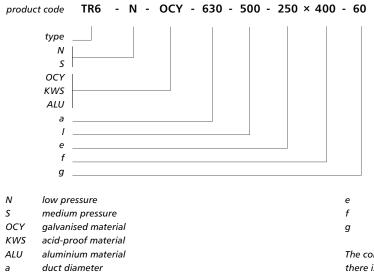
i


k


- radius (default r = 120 mm) g α
 - angle (default angle =90°)
 - extension (by default, j=30 mm)
 - extension (by default, k=30 mm)

Round Duct Take-Off **FR6**

Dimensions

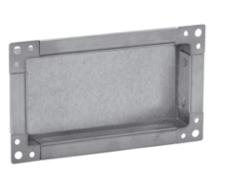

Description

а

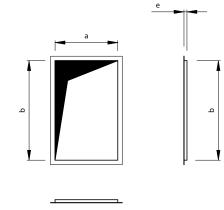
round duct length

The take-off is used to join rectangular with round ducts. On its one end it has a cover end with sheet metal joining profiles or a turned-up flange. Turn-ups for sheet screwing are usually provided on the side where the round duct is connected. The complete T-piece can also be ordered with a round duct.

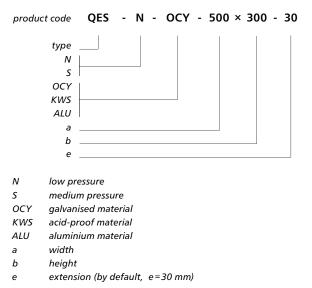
Example identification


- outlet length
- outlet width
- outlet height

The components are usually fabricated with standard dimensions, and there is no need to specify them.


ALNOR® ventilation systems

Download Wentyle Download AlnorCAM <u>Buy via B2B</u>



a

Description

The end cap is intended for terminating ducts. It is made of galvanised sheet metal. The flange is made of an end cover with sheet metal joining profiles.

Example identification

The components are usually fabricated with standard dimensions, and there is no need to specify them.